
MAT 327: Introduction to Topology
Instructor: Ahmed Ellithy

Midterm
Friday, June 23, 2023

Note: Submit by 11:30 AM through Crowdmark. No late submissions will be accepted.
You can get up to 58/50 in this test.

Problem 1 [5]

(a) Define T := {A ⊆ R | 5 ∈ A} ∪ {∅}. Show that this is a topology on R, denoted by
R5, making it a separable connected topological space.

Clearly ∅ ∈ T by definition and R ∈ T since it contains 5. Furthermore, the union
of sets containing 5 will also contain 5, and the finite intersection of sets containing
5 also contains 5. We conclude that T is a topology on R. We will denote (R, T ) by
R5.

Let U ⊂ R5 be a clopen set. If U 6= ∅, then 5 ∈ U . Since U is closed, U c is open.
Since 5 /∈ U c, U c = ∅ and so U = R5. We conclude that the only clopen sets are ∅
and R5 and hence R5 is connected.

Since every nonempty open set contains 5, {5} is a countable dense set and so R5 is
separable.

(b) Find a sequence in R5 that converges to every point. Conclude that R5 is not
Hausdorff. Is it metrizable?

Consider the constant sequence xn = 5. For a ∈ R5, every neighbourhood of a will
contain 5 by definition of the topology, and so xn converges to a. So xn converges
to every point. By a theorem in lectures, R5 is not Hausdorff since there exists a
sequence converging to more than one point. Since every metric space is Hausdroff,
R5 is not metrizable.

(c) *(bonus)* [2] Show that for every topological space X, there exists another topo-
logical space X ′ that is separable and contains X as a subspace.

Hint: Consider adding a new point to X and use R5 as an inspiration.

Define X ′ := X ∪ {p} where p is a point not in X. Equip X ′ with the topology
T ′ := {U ∪ {p} | U ∈ T }∪ {∅} where T is the topology on X. Then X ′ is separable
since {p} is dense, and X is a subspace of X ′ since every open set U in X is the
intersection of X with an open set in X ′, namely U ∪ {p}.



Problem 2 [5]

Let J be an uncountable set. Define A ⊆ RJ as follows

A := {(xα)α∈J ∈ RJ | xα = 0 for all but finitely many α ∈ J}

Show that A is path connected and is dense in RJ . Conclude that RJ is connected.

Let (xα)α∈J ∈ A. Define the path f : [0, 1] → A by f(t) = (txα)α∈J . Since every
component of f is continuous as a function from [0, 1] to R, f is continuous. Then clearly
f is a path from the zero point 0̄ ∈ A to (xα)α∈J . Since any point in A can be joined to
0̄ by a path in A, it follows that any two points in A can be joined by a path in A and so
A is path-connected.

Let ΠUα be a basis open set in RJ . Let α1, ..., αk be the points in J in which Uα = R
for α 6= α1, ..., αk. Let (xα)α∈J be the point in RJ such that xα = 0 for α 6= α1, ..., αk and
xαi
∈ Uαi

for i = 1, ..., k. It follows that (xα)α∈J ∈ A∩ΠUα, and so every basis open set in
RJ intersects A. We conclude that A is dense. Since A is path connected, A is connected
and hence Ā = RJ is connected.

Remark: A similar argument to the one described in the first paragraph also shows
that RJ is path-connected, which particularly implies that RJ is connected. But you are
asked to show that RJ is connected by finding a dense path-connected set, which is a
common way to show a space is connected.



Problem 3 [10]

(a) Let {An}n∈N be a sequence of nonempty closed sets in a topological space X that
are nested in the sense that An ⊇ An+1 for all n ∈ N. If one of the An’s is compact,

show that
⋂
n∈N

An 6= ∅.

Suppose Ak is compact for some k ∈ N. Define Un := Ak \ An, which is open in Ak.

Suppose
⋂
n∈N

An = ∅. Then

Ak = Ak \
( ⋂
n∈N

An
)

=
⋃
n∈N

Ak \ An =
⋃
n∈N

Un

Since Un = ∅ for n ≤ k, we have that
∞⋃

n=k+1

Un = Ak. In particular, the collection

{Un}n>k is an open cover for the compact set Ak, and so there exists k < n1 < n2 <
... < nm such that Un1 , ..., Unm is a cover for Ak. This implies that Ak =

⋃i=m
i=1 Uni

.
By taking Ak minus both sides and using the fact that Anm ⊆ Ani

for i = 1, ...,m,

we have that ∅ =
i=m⋂
i=1

Ani
= Anm . This is a contradiction since we know that An is

nonempty for every n.

(b) Let X be a compact locally path-connected space. Show that X can be partitioned
into a disjoint union of finitely many connected open sets.

Let (Cα)α∈J be the connected components for X. We claim that Cα is open for
all α ∈ J . For α ∈ J and x ∈ Cα, we have that there exists a connected open
neighbouhood Bx of x by virtue of X being locally connected. Since Bx is connected
and Cα is the connected component containing x, it follows that Bx ⊆ Cα by the
properties of connected components and hence Cα is open.

Since (Cα)α∈J is an open cover for X and X is compact, it follows that there exists
finitely many Cα1 , ..., Cαm that cover X. Since connected components are disjoint
and are connected, we have then shown that X can be partitioned into a disjoint
union of finitely many connected open sets, namely Cα1 , ..., Cαm .



Problem 4 [5]

(a) Define the function f : R→ RN by

f(t) := (t, t2, t3, ...)

Determine whether f is continuous when RN is equipped with the product, uniform
and box topologies.

The components of f are πn ◦ f(t) = tn and so they’re continuous from R to R. It
follows that f is continuous with respect to the product topology

Let U := f−1(Bρ̄(1̄, 1/2) where 1̄ is the constant sequence xn = 1. Clearly 1 ∈ U .
Let ε > 0. Then |πn ◦ f(1 + ε)− 1| = (1 + ε)n− 1, which goes to ∞ as n→∞. This
shows that ρ̄(f(1 + ε), 1̄) = 1 and so f(1 + ε) /∈ Bρ̄(1̄, 1/2) implying that 1 + ε /∈ U
for every ε > 0. This shows that 1 is not an interior point of U and so U is not open.
We conclude that f is not continuous with respect to the uniform topology.

Since the box topology is finer than the uniform topology and f is not continuous
with respect to the uniform topology, we conclude that the same holds for the box
topology. Another way to see this is by observing that f−1(Πn∈N(− 1

nn ,
1
nn )) = {0}.

This clearly holds since t ∈ R is contained in the left side if and only if tn ∈ (− 1
nn ,

1
nn )

which implies that t ∈ (− 1
n
, 1
n
) and so t = 0.

(b) *(bonus)*[2] It is not true that a function f : R→ (RN, Tunif ) is continuous if and
only if the components πn◦f : R→ R are continuous. Find an example of a function
f that illustrates this.

The function above is an example since the components are all continuous from R
to R but f is not continuous with respect to the uniform topology.



Problem 5 [5]

Let ∼ be an equivalence relation on a second countable topological space X such that the
natural map π : X → X/ ∼ is an open map. Suppose that ∆ := {(x, y) ∈ X ×X | x ∼ y}
is closed in X×X. Show that the quotient space X/ ∼ is Hausdorff and second countable.

We first show that X/ ∼ is second countable. Let B1 be a countable basis for X. We
claim that B2 := {π(B) | B ∈ B1} is a basis for X/ ∼. Since π is an open map, all sets
in B2 are open. Let U be an arbitrary open set in X/ ∼ and [x] ∈ U . Then π−1(U) is an
open set containing x and so there exists a basis set Bx ∈ B1 such that x ∈ Bx ⊆ π−1(U).
Then π(Bx) ⊆ π(π−1(U)) = U since π is surjective, and so π(Bx) is an element in B2

containing [x] and is contained in U as needed.

We now show that X/ ∼ is Hausdorff. Let [x0], [y0] ∈ X/ ∼ such that [x0] 6= [y0]. In
particular, this means that (x0, y0) /∈ ∆. Since ∆c is open in X ×X, there exists a basis
set U × V in X ×X such that (x0, y0) ∈ U × V ⊆ ∆c. This implies that x is not related
to y for any x ∈ U and y ∈ V . Equivalently, [x] 6= [y] for all x ∈ U and y ∈ V , and so
π(U) and π(V ) are disjoint. Since π is open, we conclude that π(U) and π(V ) are open
disjoint neighbourhoods of [x0] and [y0] respectively and so X/ ∼ is Hausdorff.



Problem 6 [20]

Are the following true or false? Justify your answer briefly.
There are 10 questions, 3 marks each; 20 is the maximum mark (excluding the bonus).

(a) The map f : [0, 1) → S1 defined by f(t) := (cos 2πt, sin 2πt) is a homeomorphism.
False. S1 is compact since it’s a closed and bounded subset of R but [0, 1) is not
compact and so they can’t be homeomorphic.

(b) Let Aα ⊆ Xα for every α ∈ J . Then Int(Πα∈JAα) = Πα∈J(IntAα).

False. For an infinite set J , Πα∈JInt(0, 1) = Πα∈J(0, 1) is not open in RJ but
Int
(
Πα∈J(0, 1)

)
is open; so they cannot be equal. (In fact, the later is the empty

set.)

(c) Let X = R \ {0}. Then A ⊆ X is compact if and only if it’s closed and bounded
(with respect to the euclidean metric).

False. [−1, 0) ∪ (0, 1] is a closed bounded subset of X but is not compact.

(d) X is connected if and only if the only subsets with empty boundary are ∅ and X.

True. U is a clopen subset of X if and only if every point in X is either an interior
point of U or an interior point of U c if and only if U has no boundary. The statement
follows as X is connected if and only if there are no proper clopen subsets of X.

(e) Let (X, T ) be a topological space. Let d be a metric on X that is continuous as a
map from X ×X to R when X is equipped with T . Then the metric topology with
respect to d is finer than T .

False. Equip X = R with the discrete metric and let d be the euclidean metric. Then
d is continuous but the standard topology is not finer than the discrete topology. In
fact, the statement would be true if “finer” was replaced with “coarser”.

(f) Let X be a first countable with a countable dense set A. For each a ∈ A, let Na be
a countable neighbourhood basis at a. Then

⋃
a∈ANa is a basis for X.

False. Let X = R`. Check the note on Piazza titled “Corrections to today’s lecture
(June 7)”.

(g) Let f : S1 → R be a continuous function. Then f is not injective.

True. Since S1 is compact and R is Hausdorff, then f is injective implies that it’s
a homeomorphism onto its image by the closed map lemma in lectures. Since S1

is connected and compact, f(S1) is also connected and compact and so must be a
closed bounded interval [a, b]. This is a contradiction since [a, b] is not homeomorphic
to S1 as the first contains a cut point while the latter does not.



(h) Let X be a second countable space with the property that sequences converge to at
most one point. Then X is Hausdorff.

True. Let x, y ∈ X such that x 6= y. Let (Un)n∈N and (Vn)n∈N be a countable nested
neighbourhood basis at x and y respectively, which exists as X is first countable.
Suppose Un ∩ Vn 6= ∅ for every n ∈ N. Construct a sequence (zn)n∈N by choosing zn
be a point in Un ∩ Vn. Then zn is a sequence that converges to x and y which is a
contradiction. Therefore, Un ∩ Vn is empty for some n ∈ N, and hence there exists
disjoint neighbourhoods of x and y. Since x and y were arbitrary distinct points, we
conclude that X is Hausdorff.

(i) {0, 1}N is metrizable where {0, 1} is equipped with the discrete topology.

True. This follows from the fact that the discrete topology is metrizable and the
countable product of metrizable spaces is metrizable

(j) Let f : X → Y be a surjective continuous function. If X is separable, then Y is too.

True. Let A be a countable dense set in X. Since f is continuous, Y = f(A) ⊆
f(A) ⊆ Y and so f(A) is a countable dense set in Y .

(k) (*bonus* [2]) A space X has k connected components if and only if there exists
a surjective continuous function f : X → {1, 2, ..., k} where {1, 2, ..., k} is equipped
with the discrete topology.

False. The backward direction doesn’t hold since more than one connected com-
ponent could map to the same number. For example X = (0, 1) ∪ (2, 3) has two
connected components but the constant function f ≡ 1 is a surjective continuous
function from X to {1}.



Problem 7: *bonus* [2]

Let f : X → Y be a surjective continuous map where X is compact and Y is Hausdorff.
Define an equivalence relation on X as follows: x ∼ y if f(x) = f(y). Show that X/ ∼ is
homeomorphic to Y .

Since f is constant on equivalence classes, it reduces to a map f̄ : X/ ∼→ Y . By 4b
in assignment 3, f̄ is continuous. It is also bijective by the definition of the equivalence
relation. Since the natural map π : X → X/ ∼ is continuous and X is compact, it follows
that X/ ∼= π(X) is compact. Since Y is Hausdroff, the closed map lemma from lectures
implies that f̄ is a homeomorphism.

Note: You can get up to 58/50 in this test.


