MAT 327: Introduction to Topology
Instructor: Ahmed Ellithy
Midterm
Friday, June 23, 2023

Note: Submit by 11:30 AM through Crowdmark. No late submissions will be accepted.
You can get up to 58/50 in this test.

Problem 1 [5]

(a)

(b)

(c)

Define 7 := {ACR |5 € A} U{0}. Show that this is a topology on R, denoted by
R5, making it a separable connected topological space.

Clearly () € T by definition and R € T since it contains 5. Furthermore, the union
of sets containing 5 will also contain 5, and the finite intersection of sets containing
5 also contains 5. We conclude that 7T is a topology on R. We will denote (R, T") by
Rs.

Let U C Rs be a clopen set. If U # (), then 5 € U. Since U is closed, U° is open.
Since 5 ¢ U°, U° = () and so U = R;. We conclude that the only clopen sets are ()
and Rj5 and hence Ry is connected.

Since every nonempty open set contains 5, {5} is a countable dense set and so Rj is
separable.

Find a sequence in Rj5 that converges to every point. Conclude that Rj is not
Hausdorff. Is it metrizable?

Consider the constant sequence z, = 5. For a € Rj, every neighbourhood of a will
contain 5 by definition of the topology, and so x,, converges to a. So z, converges
to every point. By a theorem in lectures, Ry is not Hausdorff since there exists a
sequence converging to more than one point. Since every metric space is Hausdroff,
Rj5 is not metrizable.

*(bonus)* [2] Show that for every topological space X, there exists another topo-
logical space X' that is separable and contains X as a subspace.

Hint: Consider adding a new point to X and use Rj as an inspiration.

Define X’ := X U {p} where p is a point not in X. Equip X’ with the topology
T ={UU{p} | U € T}U{0} where T is the topology on X. Then X’ is separable
since {p} is dense, and X is a subspace of X’ since every open set U in X is the
intersection of X with an open set in X', namely U U {p}.



Problem 2 [5]

Let J be an uncountable set. Define A C R’ as follows
A= {(va)acs € R’ | 2, =0 for all but finitely many o € J}

Show that A is path connected and is dense in R’. Conclude that R’ is connected.

Let (24)acs € A. Define the path f : [0,1] — A by f(t) = (txa)acs. Since every
component of f is continuous as a function from [0, 1] to R, f is continuous. Then clearly
f is a path from the zero point 0 € A to (74)acs. Since any point in A can be joined to
0 by a path in A, it follows that any two points in A can be joined by a path in A and so
A is path-connected.

Let IIU, be a basis open set in R?. Let oy, ..., a; be the points in J in which U, = R
for o # ay, ..., ap. Let (24)aes be the point in R7 such that z, = 0 for a # oy, ..., i and
To, € Uy, fori =1,... k. It follows that (z,)aecs € ANIIU,, and so every basis open set in
R” intersects A. We conclude that A is dense. Since A is path connected, A is connected
and hence A = R’ is connected.

Remark: A similar argument to the one described in the first paragraph also shows
that R’ is path-connected, which particularly implies that R’ is connected. But you are
asked to show that R’ is connected by finding a dense path-connected set, which is a
common way to show a space is connected.



Problem 3 [10]

(a)

(b)

Let {A, }nen be a sequence of nonempty closed sets in a topological space X that
are nested in the sense that A, D A, for all n € N. If one of the A,’s is compact,

show that m A, # 0.

neN

Suppose Ay, is compact for some k € N. Define U,, := Ay \ A, which is open in Ag.
Suppose ﬂ A, = 0. Then

neN

Ak:Ak\(ﬂAn):UAk\An: UU"

neN neN neN

(o]
Since U,, = @) for n < k, we have that U U, = A,. In particular, the collection
n=k+1
{Up}n>k is an open cover for the compact set Ay, and so there exists k < ny <ng <
... < My such that U,,,...,U,, is a cover for Ay. This implies that Ay = J—]" U,,.
By taking A; minus both sides and using the fact that A,,, C A, fori=1,...,m,
i=m
we have that () = ﬂ A,, = A,,,. This is a contradiction since we know that A, is
i=1
nonempty for every n.

Let X be a compact locally path-connected space. Show that X can be partitioned
into a disjoint union of finitely many connected open sets.

Let (Cq)acs be the connected components for X. We claim that C, is open for
all « € J. For a € J and = € C,, we have that there exists a connected open
neighbouhood B, of x by virtue of X being locally connected. Since B, is connected
and C, is the connected component containing =z, it follows that B, C C, by the
properties of connected components and hence C,, is open.

Since (Cy)aes is an open cover for X and X is compact, it follows that there exists
finitely many C,,, ...,C,,, that cover X. Since connected components are disjoint
and are connected, we have then shown that X can be partitioned into a disjoint
union of finitely many connected open sets, namely C,,, ...,C,, .



Problem 4 [5]

(a)

(b)

Define the function f: R — RY by

ft) = (t,12,%,..)

Determine whether f is continuous when R is equipped with the product, uniform
and box topologies.

The components of f are m, o f(t) = t™ and so they’re continuous from R to R. It
follows that f is continuous with respect to the product topology

Let U := f~!(B;(1,1/2) where 1 is the constant sequence x,, = 1. Clearly 1 € U.
Let € > 0. Then |m, o f(14+¢€) — 1| = (1 + €)™ — 1, which goes to oo as n — oo. This
shows that p(f(1+€),1) =1 and so f(1 +¢€) ¢ Bs(1,1/2) implying that 1 + ¢ ¢ U
for every € > 0. This shows that 1 is not an interior point of U and so U is not open.
We conclude that f is not continuous with respect to the uniform topology.

Since the box topology is finer than the uniform topology and f is not continuous
with respect to the uniform topology, we conclude that the same holds for the box
topology. Another way to see this is by observing that f~*(Il,en(—x, =) = {0}.
This clearly holds since ¢ € R is contained in the left side if and only if " € (—-1., 1)

which implies that t € (=%, 1) and so ¢ = 0.

*(bonus)*[2] It is not true that a function f : R — (RN, Ty,is) is continuous if and
only if the components m,0 f : R — R are continuous. Find an example of a function
f that illustrates this.

The function above is an example since the components are all continuous from R
to R but f is not continuous with respect to the uniform topology.



Problem 5 [5]

Let ~ be an equivalence relation on a second countable topological space X such that the
natural map 7 : X — X/ ~ is an open map. Suppose that A := {(z,y) € X x X |z ~ y}
is closed in X x X. Show that the quotient space X/ ~ is Hausdorff and second countable.

We first show that X/ ~ is second countable. Let B; be a countable basis for X. We
claim that By := {m(B) | B € B;} is a basis for X/ ~. Since 7 is an open map, all sets
in B, are open. Let U be an arbitrary open set in X/ ~ and [z] € U. Then n~(U) is an
open set containing x and so there exists a basis set B, € B; such that z € B, C 7r_1(U ).
Then 7(B,) C w(rm '(U)) = U since 7 is surjective, and so 7(B,) is an element in By
containing [z] and is contained in U as needed.

We now show that X/ ~ is Hausdorff. Let [z], [vo] € X/ ~ such that [z(] # [yo]. In
particular, this means that (zo,y0) ¢ A. Since A€ is open in X x X, there exists a basis
set U x V in X x X such that (zg,y0) € U x V C A°. This implies that x is not related
to y for any x € U and y € V. Equivalently, [x] # [y for all x € U and y € V, and so
7(U) and 7(V) are disjoint. Since 7 is open, we conclude that 7(U) and 7(V') are open
disjoint neighbourhoods of [x] and [yo] respectively and so X/ ~ is Hausdorff.



Problem 6 [20]

Are the following true or false? Justify your answer briefly.
There are 10 questions, 3 marks each; 20 is the mazimum mark (excluding the bonus).

(a)

(b)

(c)

(d)

(e)

(f)

(g)

The map f : [0,1) — S* defined by f(t) := (cos 27t, sin 27t) is a homeomorphism.
False. S' is compact since it’s a closed and bounded subset of R but [0, 1) is not
compact and so they can’t be homeomorphic.

Let A, C X, for every o € J. Then Int(I1,c;A4,) = Hues(IntA,).

False. For an infinite set J, IaesInt(0,1) = I4es(0,1) is not open in R’ but
Int (HQGJ(O, 1)) is open; so they cannot be equal. (In fact, the later is the empty
set.)

Let X = R\ {0}. Then A C X is compact if and only if it’s closed and bounded
(with respect to the euclidean metric).

False. [-1,0) U (0,1] is a closed bounded subset of X but is not compact.

X is connected if and only if the only subsets with empty boundary are () and X.

True. U is a clopen subset of X if and only if every point in X is either an interior
point of U or an interior point of U¢ if and only if U has no boundary. The statement
follows as X is connected if and only if there are no proper clopen subsets of X.

Let (X,7T) be a topological space. Let d be a metric on X that is continuous as a
map from X x X to R when X is equipped with 7. Then the metric topology with
respect to d is finer than 7.

False. Equip X = R with the discrete metric and let d be the euclidean metric. Then
d is continuous but the standard topology is not finer than the discrete topology. In
fact, the statement would be true if “finer” was replaced with “coarser”.

Let X be a first countable with a countable dense set A. For each a € A, let N, be
a countable neighbourhood basis at a. Then J,., N, is a basis for X.

False. Let X = R,. Check the note on Piazza titled “Corrections to today’s lecture
(June 7).

Let f: S' — R be a continuous function. Then f is not injective.

True. Since S! is compact and R is Hausdorff, then f is injective implies that it’s
a homeomorphism onto its image by the closed map lemma in lectures. Since S*
is connected and compact, f(S') is also connected and compact and so must be a
closed bounded interval [a, b]. This is a contradiction since [a, b] is not homeomorphic
to S! as the first contains a cut point while the latter does not.



(h)

§))

(k)

Let X be a second countable space with the property that sequences converge to at
most one point. Then X is Hausdorff.

True. Let z,y € X such that z # y. Let (Uy,)nen and (V,)nen be a countable nested
neighbourhood basis at = and y respectively, which exists as X is first countable.
Suppose U, NV, # 0 for every n € N. Construct a sequence (z,)nen by choosing z,
be a point in U, N'V,,. Then z, is a sequence that converges to x and y which is a
contradiction. Therefore, U, NV, is empty for some n € N, and hence there exists
disjoint neighbourhoods of x and y. Since x and y were arbitrary distinct points, we
conclude that X is Hausdorff.

{0, 1} is metrizable where {0, 1} is equipped with the discrete topology.

True. This follows from the fact that the discrete topology is metrizable and the
countable product of metrizable spaces is metrizable

Let f: X — Y be a surjective continuous function. If X is separable, then Y is too.

True. Let A be a countable dense set in X. Since f is continuous, ¥ = f(A) C
f(A) CY and so f(A) is a countable dense set in Y.

(*bonus* [2]) A space X has k connected components if and only if there exists
a surjective continuous function f: X — {1,2,...,k} where {1,2, ..., k} is equipped
with the discrete topology.

False. The backward direction doesn’t hold since more than one connected com-
ponent could map to the same number. For example X = (0,1) U (2,3) has two
connected components but the constant function f = 1 is a surjective continuous
function from X to {1}.



Problem 7: *bonus* [2]

Let f: X — Y be a surjective continuous map where X is compact and Y is Hausdorff.
Define an equivalence relation on X as follows: x ~ y if f(x) = f(y). Show that X/ ~ is
homeomorphic to Y.

Since f is constant on equivalence classes, it reduces to a map f : X/ ~— Y. By 4b
in assignment 3, f is continuous. It is also bijective by the definition of the equivalence
relation. Since the natural map 7 : X — X/ ~ is continuous and X is compact, it follows
that X/ ~= 7(X) is compact. Since Y is Hausdroff, the closed map lemma from lectures
implies that f is a homeomorphism.

Note: You can get up to 58/50 in this test.



