X Assignment 2 1sposted.

What is the difference and why is I more important? Similarities;

* If Xxis Haudorff blacs, Then TT Xx is Hausdorff in both Tard Tbox.

* let
$$A_{2,C} \times_{\chi}$$
 be a subspace. Then in both T and T_{box} ,
 $TT A_{2} = TT A_{2}$
L) Proof: $A_{2} = TT A_{2}$
 $A_{2} = TT A_{2}$
 $A_{2} = TT A_{2}$
 $A_{2} = A_{2}$
 $A_{3} = A_{3}$
 $A_{3} = A_{$

=> Every box follows basis neighd TTU2 of twees
intersects TTAX
(and so in Padicular, same holds for every freduct topology
basis neighbd)
=> (XWAES E TTAX wirt both T and Tbox.
Differences between Tbox and T:
Theorem 1: let f: A => TTX2 be siren by

$$f(X) = (f_{X}(X))_{d \in S}$$
 where $f_{X}: A \rightarrow X_{X}$
Let TTX2 be equipped with the product topology.
Then Fis continuous \iff fx is continuous toxes.
Proof: we observe that
fis cont \iff f⁻¹ (TTU2) is open whenever Usisopen
in X2 to ess and Us=X2 for all
bot finitely many dess.
(=) $(\int_{ess}^{1} (U_{A})$ is oben whenever Usisopen
in X2 to ess and Us=X2 for all

Note That ((=) might fail since addition intersection of open sets is not necessarily open.

Theorem 2: let in be a sequence in TTX equipped with The product to Pology.

Then $x_n \rightarrow x \subset = S T_{\mathcal{A}}(x_n) \rightarrow T_{\mathcal{A}}(x)$ HXEJ (Zain Assignment 2). Ex: $\mathbb{R}^{/N} = \frac{1}{2} \times : [N \rightarrow \mathbb{R}^{2} = \frac{1}{2} (\times n) \operatorname{new} [\times n \in \mathbb{R}^{2}]$ = 3 sequences in R { let $f: \mathbb{R} \to \mathbb{R}^{//2}$ $: t \mapsto (t, t, t, \cdots)$ so $f(t) = (f_d(t))_{d \in N}$ where $f_d : \mathbb{R} \to \mathbb{R}$ $t \rightarrow t$ fis cont when R Begupped with the product top using Thm 1 (Since all fa are continuous.) But : $f^{-1}(\prod_{n \neq n} (-\frac{1}{n}, \frac{1}{n})) = 203$ 1 not den A den in inR box topology Eso fisht continuous if R" is equipped with box to Pology. ('so Thm 1 is false for box topology).

Also let in be a sequence in R^M defined by

$$x_n = \xi_{nm}^2 mede
In 2bin Assignment 2, you will prove that
 $x_n \rightarrow \tilde{O}$ in the T but not in t box.
Some sequence
This shows that them 2 is false in box tofology
Metric 2. Product Topology
When is the product topology metricable?
Let (Xid) be a metric space.
Define $T: XxX \rightarrow Sonce$ by
 $This is culled the Standard bounded metric.
Theorem: T induces the same topology as d.
(Proven in Assignment 2 & the book)
Let (Xidi) i..., (Xn idn) be metric spaces.$$$

Is the Product topology on
$$\underset{i=1}{\text{tr}} \chi_i$$
 metrizable?
Guess: Define $d(\chi_i g) := \max_{\substack{i \leq n \\ i \leq n \\ i$

-

Det: Let J be an index set, We define a metric
$$\overline{S}$$

on \mathbb{R}^{J} by $\overline{S}(x_{1}y) := Sup \left\{ \overline{d}(x_{a}, y_{a}) \mid d \in J \right\}$
 $:= \sup_{d \in J} \overline{d}(x_{a}, y_{a}) \mid d \in J \right\}$
where $\chi = (\chi_{d})_{d \in J}$ and $y = (\chi_{a})_{d \in J}$ are points in \mathbb{R}^{J} .
and \overline{d} is The standard bounded metric on \mathbb{R} .
We call \overline{J} the uniform metric on \mathbb{R}^{J} , and the topology
it induces is called the Uniform topology.

Show Truncf
$$\subseteq T_{box}$$
 (show for any $x \in \mathbb{R}^3$ and $r \ge 0$,
 $TT(x_a - \frac{r}{2}, x_a + \frac{r}{2}) \subseteq B_{\tilde{p}}(x, r)$)
 des

So the Uniform metric Was not a comect guess since it induced a topology distinct from both Tprod and Thos.

Letus make another guess. We want a metoric s.l. The open balls include all real numbers for enough in the sequence.

$$\leq D(\times,y) + D(y,z)$$

Since The above holds $\forall i \in \mathbb{N},$
 $D(\times,z) \leq D(\times,y) + D(y,z).$

Then define
$$D(x_1,y) = \sup_{i} \left\{ \frac{d_{ai}(x_i,y_i)}{i} \mid i \in \mathbb{N} \right\}$$

and show D induces the product topology on $TT X_{a}$.
What about an uncountable infinite product?

We need some tools/techniques to quicklysee if a topology is metrizable. We already know one:

Def: Let (Xit) beatopology, let XEX.

A neighted basis at x is a rollection Nx of neighbol of X with The property that for every neighbol U of X, 3NE NX SI. NEU.

Det: (X,T) is first countable if every point XEX admits a Countable neighbol basis. Proposition: Every metric space is first (ountable. Proof: Let $x \in X$. Then $N_x := \{B_{y_n}(x) \mid n \in lb\}$ is a countable neighd basis space for any neighbol U by X, $\exists r > 0 s \cdot t \cdot Br(x) \leq U$ since The collection of balls is a basis for X. Let $n \in lb$ st. $\frac{1}{n} \leq r$ and so $B_{l_n}(x) \leq B_r(x) \leq U$

Post-Lecture - Practice - Questions.

1) Dothe exercises above 2) Let A C X where X is a metric spare. Show The subspace topology on A is induced by d/A. Product 3) Show not A CTTX is closed in the box topology implies matits Closed in The product topology. 4) Let (X_{i}, d_{i}) be metric spaces for $(\leq i \leq n)$. Show that $d(X_{i}y) := \sqrt{\frac{2}{5}} d_{i}(X_{i}y_{i})^{2}$ for Xiy $\in \prod X_{i}$ is a metric That induces the product (2 box to Polosy) on II Xi .