Recall: Let X be a topological space. Let YEX.

Theorem: a) $A \subseteq Y$ is closed in $Y \iff A = B \cap Y$ for some set B $\subseteq X$ that is closed in X. b) The closure of $A \subseteq Y$ in $Y = \overline{A} \cap Y$ where \overline{A} is the closure of A in X. Proof.

AxB
Subspace
to bology from
Xx3 equipped with = When A and Bare
Product to Pldogy
Product to Pldogy
Rearm: Equip A and B with The supspace to Pology.
Let T, be The Product to Pology on AxB.
Equip XxY with the Product to Pology.
Let T₂ be the Subspace to Pology on AxB
$$\leq XxY$$
.
Then T₁=T₂

Mails into Products: Let
$$f: A \rightarrow X \times Y$$
 be a function.
We can write $f = (f_1, f_2)$ defined by $a \mapsto (f_1(a), f_2(a))$
where $f_1: A \rightarrow X$ and $f_2: A \rightarrow Y$.
 f_1 and f_2 are called the Coordinate functions of f .
Theorem: F is cont $(=)$ for and f_2 are cont.
Proof: fiscont $(=)$ for $(U \times V)$ is den whenever U and V
are often.
 $(=)$ $f_1'(U) \cap f_1'(V)$ is den whenever
 U and V are often.
So that Proves $(=)$
for $(=)$: assume fiscent. Choose $V = Y, U \in X$
 $Then f_1^{-1}(U) \cap f_2^{-1}(Y)$ is often
 $=)$ for G is cont.
 $Proof = F_1 (U) \cap f_2^{-1}(Y)$ is often
 $Then f_1^{-1}(U) \cap f_2^{-1}(Y)$ is often
 $=)$ for G is cont.
 $F = f_1 (U) \cap f_2^{-1}(Y)$ is often
 $Then f_1^{-1}(U) \cap f_2^{-1}(Y)$ is often
 $=)$ for G is cont.
 $F = f_1 (U) \cap f_2^{-1}(Y)$ is often
 $Then f_1^{-1}(U) \cap f_2^{-1}(Y)$ is often
 $Then f_1^{-1}(Y) \cap f_2^{-1}(Y)$ is often

You can also prove the above than using the above identities & the fact that The composition of cont functions is cont.

Let X be a topological space. Let J be an index set.
A S-turlle delement
$$g \times is a map \times J \to X$$
.
We denote $\chi(d)$ by Xa and J-turle X by (Xa)acJ.
We define $\chi J =$ the set g all J-turples $g \times X$
If J is finite , we can Choose 14 to be $J = \frac{1}{2}[12]^{-10}$?
Then $\chi J = \chi \times \chi \times \chi - \chi \chi = \chi^n$
It images
Let $\{A_a\}_{d \in J}$ be an indexed family A sets.
The contestion product $g \times A_a \gtrsim_{d \in J}$ is defined as follows
 $\prod A_d := \{\chi : J \to U A_a \}$
 $\chi_d := \chi(d) \in A_a$
 $\chi_{d \in S}$
We simplify the notation by the dropping the index set.
 $TA_d , (\chi_d)$

Note that X = Ad = AB Ha, BEJ, Then IT Az = X^J

Let 2 X2 3265 be an indexed family of topological spaces.

We wish to define a topology on TT X2.

As before, we directly check $\mathcal{B}_{box} := Z T U_d \left[U_d \in X_d is den \right]$ make a basis for a topology T_{box} called the box topology.

Wrt this topology, we directly observe that The Projection maps $T_{\mathcal{B}}: TTX_{\mathcal{A}} \longrightarrow X_{\mathcal{B}}$ are continuous.

We can also equip TT & with the coarsest topology inwhich all projection maps are cont. The topology must contain $C := \left\{ T_{\mathcal{B}}^{\neg}(U_{\mathcal{B}}) \right\} \xrightarrow{\mathcal{B} \in J}_{I > OPEN} U_{\mathcal{B} \in X_{\mathcal{B}}}$ Since finite intersections of open sets are den, then The topology must also contain $B := \{ finite intersection of sets in C \}$ Which forms a basis for a topology t which we call The product topology.

Sets in B one of the form IT U2 where U2 = X2 one open and U2 = X2 except for finitely many. Clearly Bbox = B => Tbox = T so The box for follogy is finer than The product topology. If Jis finite, Then Tbox = T × T is The default for Pology on a cartesian product.

Post-lecture-Practice-Questions

Do the exercises above.
 Show the composition of continuous functions are Cont.

converses uniformly to fe C(R). Does fn -> f Wrt subspace topology interited from IRR? 9) Let Xn= 9/123 with the discrete to Pology. Let X = TTXn. Find explicitly the Thox and T and show They aren't equal. 10) let X = (R, Idiscrete) Is the product to Pology on X" The discrete fordosy? What about the box topologg on X. 11) let Aa <= Xa be a closed set for eachdEJ. Is TTAg closed in the product for? box total.? dET