* Assignment is due today at SPM.
Let X be a topalopical SPANE.
A Dearen from last lacture:
(1)
$$\overline{AUB} = \overline{AUB}$$

 $Prod^A$: $AUB \subseteq \overline{AUB} \implies \overline{AUB} \subseteq \overline{AUB}$
 $A \subseteq \overline{AUB} \implies \overline{A} \subseteq \overline{AUB}$
 $A \subseteq AUB, \implies \overline{A} \subseteq \overline{AUB} \implies \overline{AUB} \subseteq \overline{AUB}$
 $A \subseteq AUB, \implies \overline{A} \subseteq \overline{AUB}, \implies \overline{AUB} \subseteq \overline{AUB}$
 $B \subseteq AUB \implies \overline{A} \subseteq \overline{AUB}$
(2) $\bigcup \overline{Adx} \subseteq \bigcup Adx$ $\forall de T$
 $Prod^A$: $A \perp C \supseteq Adx$ $\forall de T$
 $\Rightarrow \overline{Ai} \subseteq \bigcup \overline{Aix}$ $\forall de T$
 $\Rightarrow \overline{Aix} \subseteq \bigcup \overline{Aix}$
 $\Rightarrow \bigcup \overline{Aix} \subseteq \bigcup \overline{Aix}$
 $f = \sum exection = 1$
 $\Rightarrow \overline{AiB} \subseteq \overline{AiB}$
 $\Rightarrow \exists AiB \subseteq \overline{AiB}$
 $\Rightarrow \exists AiB \subseteq \overline{AiB}$

(4)
$$(A) = (A) =$$

Let YEF(A) >> Y=F(x) for some XEA Let Uy be an additioning neighbol of y. Then f⁻¹(Uy) = x is oren since fiscont. And so f⁻¹(Uy) intersects A since xEA

=> Uy intersects
$$f(A)$$

Since Uy vosan additions neighbol $f(Y)$, $Y \in \overline{f(A)}$
(c) => (b) Let B CY be a closed set.
WTS A:= $f^{-1}(B)$ is closed. Recall the following two facts:
(*) $f(f^{-1}(B)) \subseteq B$ for any BCY
(*) $f^{-1}(f(A)) \supseteq A$ for any $A \subseteq X$
 $f(A) = f(f^{-1}(B)) \subseteq B$
 $\Rightarrow f(A) \subseteq B => f(A) \subseteq B$ since (c) K
satisfied.
Also $\overline{A} \subseteq \overline{f}(f(\overline{A})) \subseteq f^{-1}(B) = A$
 $y_{1}y_{2} = 0$
 $\therefore \overline{A} \subseteq A => A \text{ is closed}.$
(an woodd (d): $f(f(A)) \Rightarrow f(G)$ where $f(A) = X$
This is Called sequential continuity and is not almost
equivalent to (ontinuity.

Proposition: Let f: (X, TX)
$$\rightarrow$$
 (Y, Ty) be
a homeomorphism. Then X and Y as topological spaces
are the "same" up to remaning of Deelements X "="f(x)
Circlistinguishable as tapological spaces) in the sense that
every topological poledy is minimat under f:
(a) A is oben (closed (S) f(t)) is oben/ closed
(b) X is a limit/isolated/bandary/interner point of A
(c) X is a limit/isolated/bandary/interner point of A
(c) X is a limit/isolated/bandary/interner of f(A)
(c) X is thousdard (S) Y is thousdard/
(d) X is thousdard (S) Y is thousdard
(e) A SX is comfact (connected (S) f(t)) is comfact/
(c) X is comfact (connected (S) f(t)) is comfact/
(c) X is thousdard (S) Y is thousdard
(c) X is thousdard (S) Y is thousdard
(c) A SX is comfact (connected (S) f(t)) is comfact/
(c) A SX is comfact (connected (S) f(t)) is comfact/
(c) A SX is comfact (connected (S) f(t)) is comfact/
(c) A SX is comfact (connected (S) f(t)) is comfact/

Remals: Topological properties are also called topological invariants due to the above proposition.

New Spaces from old: Product Topology

Let (+, tx) & (Y, ty) be topological spares. The Product topology on XXY 15 The topology generated by The basis & UXV | UETX, VETY? Very? Very This is a basis So A & XXY 15 OPEN 1FF & CriyEA, 3 neighbd UX&XX and a neighbd Vy & y s.t. UXXVy & A.

Lemma: If Bx is a basis for Tx and By is a basis for Ty, Then & BxxBy) BxEBx and ByEBy 31s a basis for the product topology on XxY. Proof

Ex: The Product topology on
$$\mathbb{R}^{2} = \mathbb{R} \times \mathbb{R}$$
 is generated by
 $\begin{cases} (a_{1}b) \times (c_{1}d) & | a_{2}b_{1}, c_{2}d \end{cases}$
 $= \begin{cases} often balls with the metric $d((x_{1}, g_{1}), (x_{2}, g_{2})) \\ := \max\{|x_{1} \times e_{1}|, g_{2} - s_{1}|\} \end{cases}$
Ls Generates the standard topology on \mathbb{R}^{2} .
The Product topology on \mathbb{R}^{2} = The standard topology on \mathbb{R}^{2} .
The Projection functions: $T_{1}: X_{2}Y \rightarrow X$
 $a_{1}d_{1}T_{2}: X_{2}Y \rightarrow Y$
 $(x_{1}g_{2}) \mapsto X$
and $T_{2}: X_{2}Y \rightarrow Y$
 $(x_{2}g_{3}) \mapsto Y$
Note T_{1} and T_{2} are subjective.
The U is often, then $T_{1}^{-1}(U) = U_{2}Y$ is often in $X_{2}Y$
 T_{1} and T_{2} are continuous.
We con ask : What is the Coarsest / finest topology on $X_{2}$$

The coarsest topology must contain
$$C := \{T, U\} | U \in T_X \}$$

 $U \{T, U\} | V \in T_Y \}$
 $= \{U \times Y | U \in T_X \}$
 $U \{X \times V | V \in T_Y \}$

Nefine B= 2 finite intersections of sets in C3 makes a basis for a topology on X×J Which would be the Coursest topology Containing C.

Note that
$$B = \frac{2}{2}UxV$$
 | UETx and UETy 3
Since $\pi_{i}^{-1}(U) \cap \pi_{i}^{-1}(U)$
which is a basis for the product to pology. = UXV

Remark: The above this false for infinite products.

Inspired by the above, we define the subspace in general topological spaces:

Example:
$$y_{i=}(0,1] \leq iR$$

The subspace topology is generated by The basis $\{(a,b), n(o,i)\}_{n=0}^{n}$
So $(\frac{1}{2},1]$ is obtaining since $(\frac{1}{2},1] = (\frac{1}{2},2), ny$
 $= (\frac{1}{2},3), ny$

but
$$(\frac{1}{2}, n)$$
 is not open in X.

Pemark: Let A ⊆ Y. When me falk about a topological property for A, we need to specify which topology

Note that Y is always offen in Y but not necessarily open in X.

Post-Lecture-Practice-Questions.

4) a) let $f: X \to Y$ be a cont function between. Topological spares. Let $x_n \to X$. Show $f(x_n) \to f(x)$.

6) Show that the subspace topology of YCX is a metric topology Whenever XIS a metric space. (Any subspace of a metric space is a metric space)

8) Let YEX. Show That the inclusion map i: Y-SX defined by i(x) = x for x ∈ Y is continuous. Show that the suppose to Pology is the coarsest topology in which is Continuous.

b) Show that D is noneomorphic to X where D is equipped with the subspace topology it inherits from the product topology on XXX.