Topological Properties (Concepts

Let (X,T) be a topological space. Let B be a basis for T.

Important Termindogy: Let XEX. Let V be an open set containing X. We say That Us a neighbol of X.

$$E_{\uparrow}$$

*
$$(X_1 \cup dx_{exte}) \quad X_n \rightarrow \chi \quad \text{iff} \quad x_n \text{ is eventually constant}$$

begand to χ . Show this.
* $(X_1 \cup \text{indiscrek}) \quad \text{All sequences converse to very element.}$
 $\text{Show this.} \quad \text{indict in teasequence.} \quad \text{let } \chi \in \chi. \quad \text{Tren } \chi \quad \text{is the only verglad}}$
* $\text{Define } T = \frac{\chi}{\chi}(a_{K}g) \mid a \in \mathbb{R}^2$. Show this a defelogy.
 $\text{Show } \chi_n \rightarrow \chi \quad (=) \quad \chi \not \leq \underset{n \rightarrow g}{\text{liminf } \chi_n}$
 $\left(\underset{n \rightarrow g}{\text{liminf } \chi_n} = \underset{n \rightarrow g}{\text{lim}} \quad \underset{k \geq n}{\text{inf } \chi_k}\right) \quad \underset{n \rightarrow g}{\text{lim}} \quad \chi_n = \chi$

$$\begin{pmatrix} \lim \sup x_n &= \lim_{n \to \infty} \sup X_k \\ n \to \infty \end{pmatrix} \begin{pmatrix} = \lim_{n \to \infty} x_n \\ = \chi \end{pmatrix} = \chi$$

$$\begin{pmatrix} \lim \sin x_n \\ \to \infty \end{pmatrix} \chi \begin{pmatrix} = \\ = \\ for every basis set B containing \\ \chi, 3Nell set X_n \in B. \\ \frac{\operatorname{Proof} : (=)}{(=)} by definition & by B \subseteq T. \end{cases}$$

Def: Suppose
$$(X, T_X) & (Y, T_Y)$$
 be topological
spaces. A map $f: (X, T_X) \rightarrow (Y, T_Y)$ is
Continuous if $f^{-1}(U)$ is open in X whenever U is open in Y .
I for a set $U \subseteq Y$, $f^{-1}(U) := \{X \in X \mid F G \} \in U$
Preimage

Lemma: Let By be a basis for Ty. Then

$$f: (X_i t_X) \rightarrow (Y_i t_y)$$
 is continuous iff
 $f'(B)$ is open in X for every $B \in By$.
Proof: (=) fallows from $By \subseteq ty$
Hint: $f'(UB_d) = Uf'(B_d)$

Def:
$$f:(X,T_X) \to (Y,T_Y)$$
 is an open map if
 $f(U)$ is open in Y whenever U is open in X.

Lemma: fisa homeomorphism rff it's bijective continuing and anoten map. (=) fri is continuous.

* What are the continuous functions from (X, Cco-tinite) to itself? (Think about it)

Metric Topology

Let
$$X$$
 be a set.
Def: A metric is a function $d: X \times X \rightarrow Coice$)
Satisfying:
Descriptions (a) $d(X_i y) = 0 \iff X = y$
We vant (b) $d(X_i y) = d(y_i x)$ $\forall X_i y \notin X$
a sensible (c) $d(X_i y) = d(y_i x)$ $\forall X_i y \notin X$
is distance (c) $d(X_i \chi) \iff d(X_i y) + d(y_i \chi)$ $\forall X_i y, \chi \notin X$
between (c) $d(X_i \chi) \iff d(X_i y) + d(y_i \chi)$ $\forall X_i y, \chi \notin X$
between (c) $d(X_i \chi) \iff d(X_i y) + d(y_i \chi)$ $\forall X_i y, \chi \notin X$
between (c) $d(X_i \chi) \iff d(X_i y) + d(y_i \chi)$ $\forall X_i y, \chi \notin X$

$$\underline{E}_{X}$$
: (\widehat{F}) let $||\cdot||: |\mathbb{R}^{n} \rightarrow [oid)$ be a norm on $|\mathbb{R}^{n}$,
then $d(X,Y) := ||X-y||$ is a metric. Verifythis

(A) Let
$$(X, d)$$
 be a metric space.
Then $d'(X, y) = \frac{d(X, y)}{1 + d(X, y)}$ is conother metric.

Def: Let
$$(X,d)$$
 be a metric space. For $x \in X$
and $r > 0$, we define the open ball centered at x
with radius r as $B_r(x) := \{x \in X \mid d(x,y) \ge r\}$
Then $B := \{B_r(x) \mid r > 0 \mid x \in X\}$ is a
basis for a foology called the metric foology (Verify)
U isoPen $\longrightarrow \forall x \in U$, Johen ball centered at x inside U
 $(=) U$ is a union of open balls.

Terminology: A metric "inducer" a topology called metric topology

Metoic Spaces are Hausdorff.

Proposition; Let (XIT) be a Hausdoff space. Then selvence Converge to at most one point. proof: let mbe a segrence that converges to x and y. Suppose X # y. Let Ux and Uy be a neighbol of x and a neighbol of y that are disjoint. Since An->X, BNEMS-L- XnEUX. This in Parlicular implies that Uy Contains at most finitely many of the xn's as Uy is disjoint from Ux. This Contradicts that Xn > y. B Corallary: In Metric spares, sequences converse to atmat One foint -Vel: A to Pological Space (X,T) is metrizable if I metric on X s.t. The metric topology induced

=> Indiscrete & Ray topology one not metrizable.

by d Coincides with T.

Def Let ACX. The Closure A A, denoted by A, is the intersection of all closed sets containing A. It follows that: * A is the Smallest Closed, containing A intresense if B2A is Closed, then B2A.

1) Dothe above exercises.

E) Suppose
$$f:(X,T_1) \rightarrow (X,T_2)$$
 is
a homeomorphism. Show $T_1 = T_2$.

3) Show that
$$f: (X,d_1) \rightarrow (Y,d_2)$$
 is
Continuous iff $\forall x \in X$ $\forall x \geq 0$, $3 \leq 0$ s.t.
 $d_2(f(y), f(x)) \leq u$ whenever $d_1(x, y) \leq 8$.

4) a) Let
$$(X, d)$$
 be a metric space.
Define $d'(X, y) := \frac{d(X, y)}{1+d(X, y)}$. Show d' is a metric.
b) Show that X is bounded with d' .
c) Show that $d'(X, y) \leq d(X, y)$.

Conclude that
$$f: (X, d) \rightarrow (X, d')$$

Olefined by $f(x) = x$ is continuous.
5) Let $f: X \rightarrow Y$ be a map.
For each chrice of topology on X, What is the finest.
topology on Y sothert f is continuous ?
For each choice of topology on Y; what is the Coarsest topology
on X so that f is continuous?
(6) Ts if the that $f: X \rightarrow Y$ is continuous iff

() Is it the that
$$f: X \to J$$
 is continuous iff
 $\forall x \in X$ and every sequence x_n converging to x , $f(x_n)$
(onverges to $f(x)$?

7) Let
$$(X, d)$$
 be a metric space.
Define $d'(x,y) = \min \{2d(x,y), 1\}$.
Show that d' is a metric that induces the same topology as d .