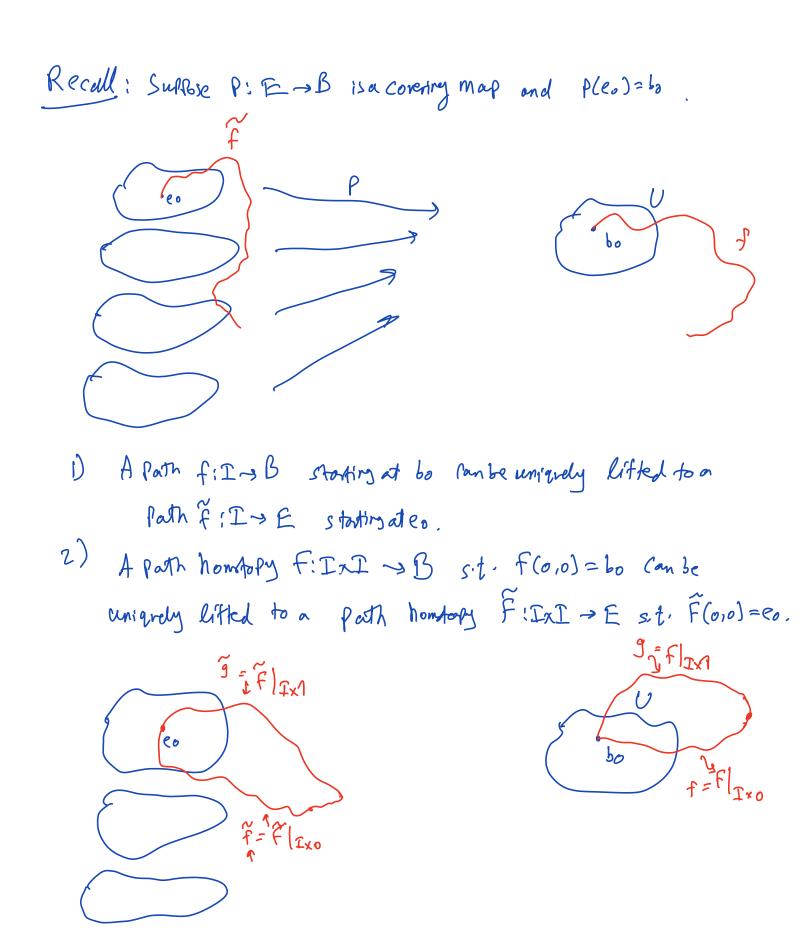
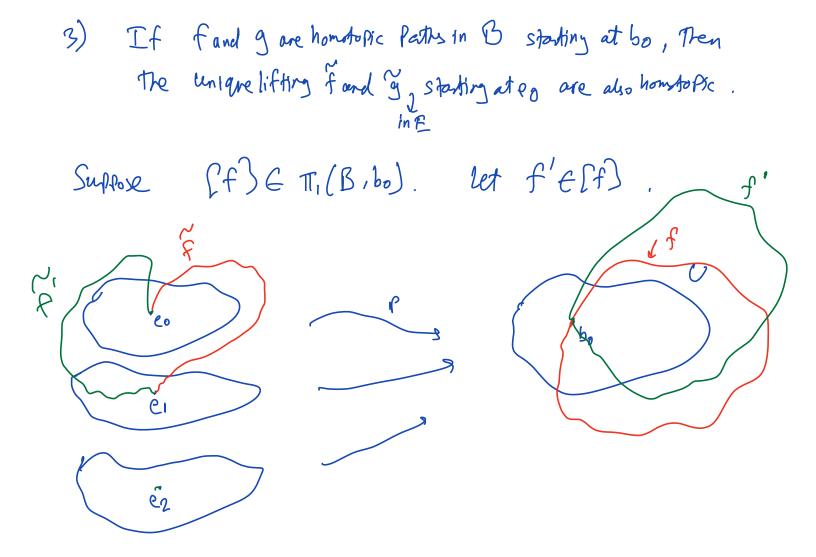
* Course evaluations

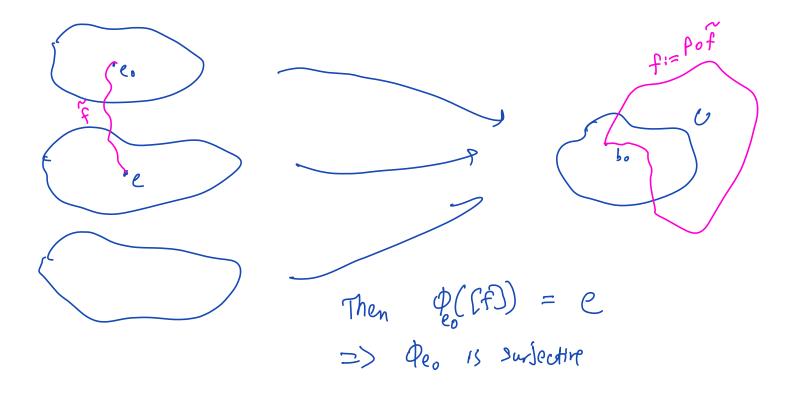
* Assy & Ass 5 morking will be done soon.



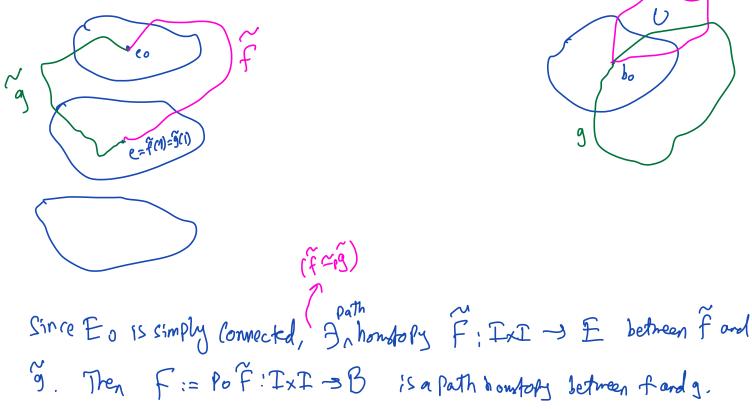


If $f \leq f'$, then $e_1 := f(1) = f'(1)$ by #3 above We define a map, $\Phi_{e_0} : \Pi_1(B_{1,b_0}) \rightarrow P'(b_0)$ by $\Phi_{e_0}(ff) := f(1)$ where f is the unique lifting of f startingates. By the above observations, this map is well defined. Φ_{e_0} is called the lifting correspondence derived from the covering map P.

Suffore E is path connected. Let $C \in P'(bo)$ 3 path $\hat{F}: I \rightarrow E$ starting at coordending in e.



Suppose \mathbb{E} is simply connected. Suppose figure loops based at bo s.t. $\tilde{f}(1) = \tilde{g}(1)$.



Then f = pg. => Deo isinjective.

We have Deproven:

Theorem : Let P: E > B be a covering map. Let P(eol=bo. If E is path connected, Then The lifting Connected re Oleo is surjective. If E is simply connected, Then Oleo is bijective.

Theorem: The fundamental group of S^1 is isomorphic to (\mathcal{H}, t) .

<u>Proof</u>: Let P: $R \rightarrow S'$ be the covering map defined by P(x) = (COSCETX), SINCETTX).

Since
$$[R_{is} simply connected, the lifting correspondence
 $\phi_{o}: \pi_{i}(S^{1}, (1, 0)) \longrightarrow p^{1}(1, 0)$ is bisective.
 $\overline{Z}$$$

It suffices to show that Φ is a homomorphism. So we need to show that for every [f], [g] \in IT, (s', (1,0)), $\Phi_0(\Gamma f] * [g]) = \Phi_0(\Gamma f]) + \Phi_0(\Gamma g]).$

Let [f], $[g] \in T_{i}(S', (1io))$. let $m = \phi_{o}([f])$ and $n := \phi_{o}([f])$

0 a=g+m Ę Define g: I > R by g(x) = g(x) + m Then $Po(\tilde{f} * \tilde{g}) = (P_0 \tilde{f}) * (P_0 \tilde{g})$ = f $(Po(\tilde{g}_{fm}))$ $= f \times (P_0 \tilde{g})$ = f * 9 => F×g isa lifting of f*g. => Po (F]*(3) = Po((P*g]) $-\widetilde{f} \neq \widetilde{g}(1) = m + n$ $= \phi_0(ff^2) + \phi_0(fg)$ os næded $:: \quad TT_{i}(S', C(i)) = 2$ Recall: A retraction of X onto ASX is a continuous map $f: X \rightarrow A$ s.t. $f|_A = Id|_A$.

Corollarly; There is no retraction from the disk B² onto S¹.

Proof: Suppose
$$\exists$$
 continuous map $f: \mathbb{B}^2 \to \mathbb{S}^1$
s.l. $f|_{\mathbb{S}^1} = \exists d|_{\mathbb{S}^1}$.

from the assignment, $f_X : \Pi_1(B_1^2, x_0) \rightarrow \Pi_1(S', y_0)$ is surjective. But $\Pi_1(S', y_0) = \mathcal{R}$ and $\Pi_1(B_1^2, x_0) = 0$

R

How do we "fs?" This? Ver. (consider $B^2 \setminus \{20\}^2$. Let $f: B^2 \setminus \{20\}^2 \rightarrow S^1$ defined by $f(x) = \frac{x}{\|x\|}$ which is a vetraction. \Rightarrow f_{X} : $\Pi_{1}(B^{2}\setminus\{0\}, \chi_{0}) \rightarrow \Pi_{1}(S', \chi_{0})$ 15 surjective => Tr(B2)(203) =0 In fact $\Pi(B^2 \setminus \{0\}, X_0) \cong \Pi(S', X_0) = (\mathcal{Z}, +)$

Post-lecture - Prectice - Questions

 Dotre exercises above.
 a) let f: I→ X Le a loop based at Xo EX. Show That ∃! Continuous map f: S'→ X s.t. f= Poff where p: I→ S' :X I→ (coseThe sine The)
 b) Show that f∈ [exo] (=> f is null homotopic. (onclude that the identity map from S' to S' is not nullhomotopic.