* Couse Evaluations * Ass. 6 isdre Sunday Aus 13.

overing Spaces

Covering spaces is one of the foils that allow is to compute Fundamental groups of many topological spaces.

* The subspace
$$P^{-1}(b)$$
 is discrete.
* P is an open map. Let ASE be open. Let be $CP(A)$
Then Finished U & bo that is creatly covered by P. Let eo CA
S-L: $P(co) = bo$ and let Va be the slice in the Portition
& $P'(U)$ that contains co . Then $P|_{Va}(Va(A))$ is a resoluted
 D bo in $p(A) = p(A)$ is open in B.

* Pisa local homeomorphism meaning that teEE, 3 neighd A de and neightd U of P(e) s.t. P/A: A ~ U Is a homeomorphism.

Then $P: E \rightarrow X$ defined by P(X,K) = X there is a (trivial) covering map.

We usually restrict ourselves to Path connected Covering spaces.

Ex (not trivial): Defire P: R -> S by P(x)= (Cosztix, Sin2tix) CV2 -1 -3 -2 Prove

15a Covering map

U is evenly (overed by P since
$$P'(U) = \bigcup (n, n+\frac{1}{4})$$

and $P|_{(n, n+\frac{1}{4})} : (n, n+\frac{1}{4}) \rightarrow (U)$ is a homeomorphism
the Z.
So $\{(n, n+\frac{1}{4})\}_{n\in\mathbb{Z}}$ is a partition $\bigwedge P'(U)$ into slices.
Not every Local homeomorphysm is a lovering map:
Et: Define P: (0, co) $\rightarrow S^1$ by $P(x) = (Costix, sinto)$
P is cont, suis and is a local homeomorphism.
But is it a covering map?
 $y_{ij} = S^{ij} = y_{ij} = y_{ij} = y_{ij}$
 $f = U = Control = S^1$ by $P(x) = (Costix, sinto)$
P is cont, suis and is a local homeomorphism.
But is it a covering map?
 $y_{ij} = S^{ij} = y_{ij} = y_{ij}$
 $f = U = Control = U = S^1$
 $y_{ij} = S^{ij} = y_{ij} = y_{ij}$
 $f = U = Control = S^1$
 $y_{ij} = S^{ij} = y_{ij} = y_{ij}$
 $f = U = Control = S^1$
 $f = U = S^1$
 $f = U = Control = S^1$
 $f = U = S^1$

Proposition:
1) lot
$$P: E \rightarrow B$$
 be a covering map. If Bo is
a subspace AB and $E_0 = P^+(B_0)$, then $P|_{E_0}: E_0 \rightarrow B_0$
1s also a covering map.
2) If $P_i: E_1 \rightarrow B_1$ and $P_2: E_2 \rightarrow B_2$ are
covering maps, then $P_1 \times P_2: E_1 \times E_2 \rightarrow B_1 \times B_2$ is
also a covering map.
Properties

EX: let P:R→S' bette coresing map defined above. Then PXP: RXR → S'XS' is also a covering map.

S'XS' CIR4 but admits a nice embedding into R'S.

15 min break: fillin Coursevaluations,

lef: let P:E-SB be a map. If f: X -> B is a continuous map, a lifting of fis map F: X-SE s.t. $Po\tilde{f}=f$ E A B (ommute)

Proof !

(Over B with open sets & U2 Jats That are

Let U_{a} be neighbold of f(forsig) that is every concred. Let V_{a} be the sline in the partition of $P'(U_{a})$ that contains the ordering $f(forsig) := P \int_{V_{a}}^{1} e^{f(forsig)}$.

Then let Up be neishold of
$$f([s_1, s_2])$$
 that is evenly concred.
Let Up be the slice in the Partition of $P'(U_p)$ that contrins
 $f(s_1)$. Define $f|_{(s_1, s_2)} := P|_{V_p} \circ f|_{(s_1, t_2)}$.
Proceed mithin may to define the path $f': [ord] = E$.
It clearly satisfies $f = P \circ \tilde{f}$.
Uniqueness follows from the proof let $f': s room Pletds obten
by Pard 5.
Uniqueness follows from the proof let $f': be another
Path in E starting at eo and satisfying $f = P \circ \tilde{f}$.
Since $\tilde{f}(o) = \tilde{f}(o) = eo$, then on $(ors_1) = P|_{V_2}$ is a homeomorphism
from Va to Va. And so $\tilde{f}|_{(oss_1)} = P|_{V_2}^{-1} \circ f = \tilde{f}|_{(oss_1)}$.
The same holds for any of the other sub intervals.$$

Proof is similar to the previous lemma. Showit regorously,

Let $P: \stackrel{{}_{\sim}}{\to} \mathbb{B}$ be a covering map. Let $P(e_0) = b_0$. Let $f,g: I \to \mathbb{B}$ be paths in $\mathbb{B} s \cdot t \cdot f(o) = g(o) = b_0$. Let $\tilde{f}, \tilde{g}: I \to E$ be their reflective liftings to Paths In E starting ateo. If $f \simeq pg$ then $\tilde{f} \simeq p\tilde{g}$.

Proof: Let $F:IXI \rightarrow B$ be a path homotopy of f and g. Then by The Previous Remma 3 a Path Momotopy $F:IXI \rightarrow E$ That is a Rifting of F:SZ. $F(0:0) = e_0$. Since F is a path homotopy. $F(0:XI) = \frac{1}{2}e_0^2$ and $F(1:XI) = \frac{1}{2}e_1^2$

Show this?
$$F := F|_{Ixo}$$
 and $\tilde{g} := F|_{Ixn}$ is the respective
lifting of the paths f and g. And so $\tilde{f} \cong p \tilde{g}$.
Post-lecture-practice - Questions
1) Show the exercises above?
2) In the proof above, why is $\tilde{F}(oxt) = \frac{1}{2}e_{1}^{3}$ and $\tilde{F}(1xt) = \frac{1}{2}e_{2}$?
Deduce that $\tilde{f} = \tilde{F}|_{Ixo}$ and $\tilde{g} = \tilde{F}|_{Ix1}$
3) Solve #11 So #25 in section 54.

4) Let P: E-B a rovering map where Bis Rocally Confact and Hausdalf, Show That Eis also locally compact and Hausdalf.