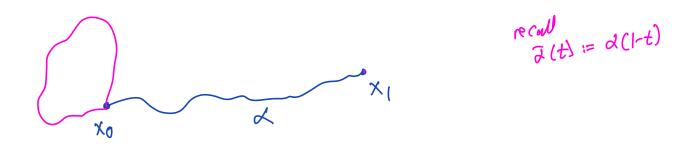
Course Evaluation X * Required reading: Appendix C from Topological manifolds

Fundamental Group

loop based at xo. The set of Path homotopy classes of loops based at Xo with the operation & is called the fundamental group of X at the base point Xo. It is denoted by $Tr_i(X, x_o)$. Thank to this from last lecture, Thi (X, xo) is a group under *. The identity Cxo.



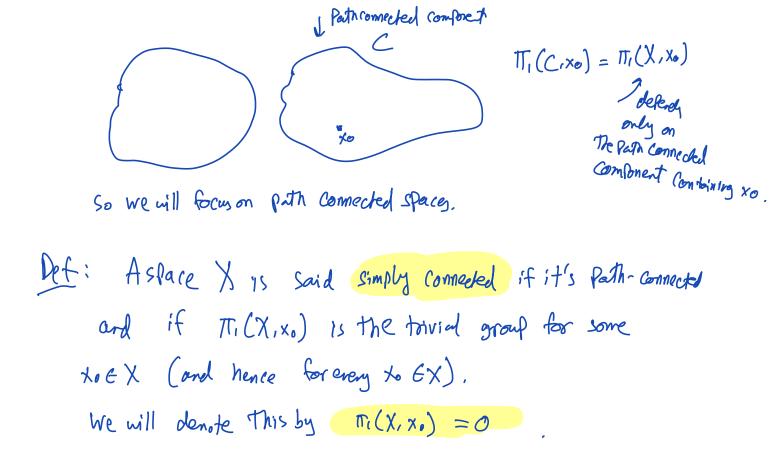
Theorem:
$$\hat{\alpha}$$
 is a group isomorphism.
Proof: We wont to show that $\hat{\alpha}$ is disective and
is a homomorphism ("linear" / persensitive operation)
 $\star \hat{\alpha}(ff)\star fg) = \hat{\alpha}(ff\star g)$
 $= \hat{\alpha}^{2} \star ff\star g) \star f\alpha$

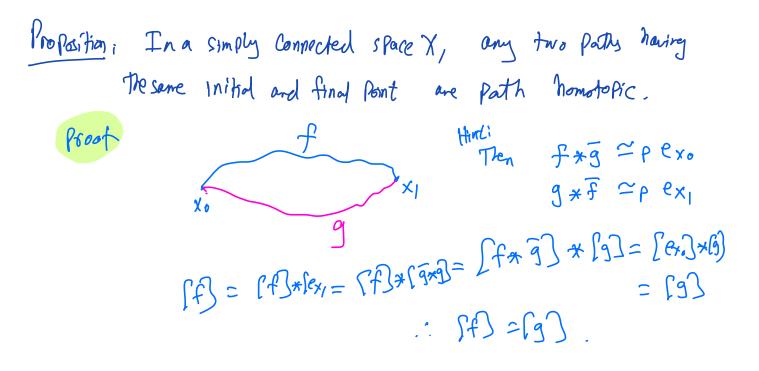
$$= \left[\overline{a} + f + g + d\right]$$

= $\left[\overline{a} + f + e_{x_0} + g + d\right]$
= $\left[\overline{a} + f + d + \overline{a} + g + d\right]$
= $\left[\overline{a} + f + d\right] + \left[\overline{a} + g + d\right]$
= $\left[\overline{a} + f + d\right] + \left[\overline{a} + g + d\right]$
= $\left[\overline{a} + f + d\right] + \left[\overline{a} + g + d\right]$

Z

Corollary: If X is path connected and xo, xi EX, Then TT. (X, xo) is isomorphic to T. (X, xi).





Let h: X > Y s.t h(x_)=yo. We denote this by h: (Xixo) -> (4,30)

r

Def: let
$$\lambda: (\chi, x_0) \rightarrow (y, y_0)$$
 be a continuous map.
Define $h_{\mathcal{X}}: \pi_i(\chi, x_0) \rightarrow \pi_i(y, y_0)$ by
 $h_{\mathcal{X}}(ff) = [hof]$
Show this is nell defined.
Also $h_{\mathcal{X}}(ff) * fg)$
 $= [hof f * g]$
 $= [hof f * hog]$
 $= hof] * [hog]$
 $= h_{\mathcal{X}}(ff) * h_{\mathcal{X}}(g)$

-

and so hay 15 a homomorphism.

Each Continues map
$$h: (X, x_0) \rightarrow (Y, Y_0)$$
 induces a
group homomorphism $h_X: Tr(X, x_0) \rightarrow Tr(Y, Y_0)$

Post - Lecture - Practice - Questions.

1) Dothe exercises above

2) show that $(\overline{x}) = [\overline{x}]^{-1}$ $\forall x \in Ti(\overline{x}, \overline{x}).$ Interpret the fact $\overline{x} \neq \alpha = e_{xo}$ visually.

3) Solve #[-#5 In Munking Sections2.