Algebraic Topology

Given two tolological space, we ush to know whether anot they're homeomorphic.

Studying The topological proferies /topological invariants is a way to decide if two spaces are homeomorphic.

conflot
$$R^{1} \neq R$$
 is not conflict
 $\int O R \neq S^{1} \neq R$ is not conflict
 $\int O R \neq R^{2}$ (studying the cut point
 $gl each space)$
 $R \neq R^{2}$ (cut Points)
 $\int R^{2} R^{2} R^{2}$ (cut Points)
 $\int R^{2} R^{2} R^{2} R^{3}$
 $\int R^{2} R^{3} R^{3}$
 $\int R^{3} R^{3} R^{3} R^{3} R^{3}$
 $\int R^{3} R^{3} R^{3} R^{3} R^{3} R^{3} R^{3}$
 $\int R^{3} R$

Studying all the different" closed curves (Loops) will introduce a new topological invariant that is more general them simple competed ness.

2 Carries are the "same" if one can be cont. defeared into the other. This will defire an equivalence relation on the space of Curves/paths. We will defire an operation on Gequivalence clases 3 giving it an algebraic Structure (making it a group called the fundamental group). It will turn out that noneomorphic spaces have the "same" fundamental group. This introduces a new tool to prove 2 spaces are not homeomorphic (by studying their fundamental group).

Inshart, Algebraic tofology is the study of tofological Spaces by means of algebraic obsects.

Homotopy & Paths

Def: If
$$f, f': X \rightarrow Y$$
 are continuous functions,
We say f is homotopic to f' if \exists continuous $fix X X T \rightarrow Y$
s.t.
 $F(x_{10}) = f(x)$ and $F(x, 1) = f'(x)$
for each $x \in X$.
The map F is called a homotopy between f and f' .

If fis homotopic to
$$f'$$
, we write $f \simeq f'$.
If $f \simeq f'$ and f' is a constant map, we say f is
Nulhomotopic.

Fis a cont 1-Parameter family
$$f$$
 maps from X to Y .
 $t \mapsto F_t$ (: $x \mapsto F(X,t)$)
 $F_0 = f$, $F_1 = f'$

Def A continuous
$$f: I \rightarrow X$$
 is called a path in X.
Xo:= f(o) is called the initial point.
X_1:= f(1) is called the final point.

Def: Two Paths f and f' are Path homotopic
if they have the same initial and final point and
There exist a cont map
$$F: I \times I \longrightarrow X$$
 structure
 $F(s, o) = f(s)$, $F(s, 1) = f'(s)$
 $F(ort) = Xo$, $F(1,t) = Xi$
 $f(r) = f(s)$
 $F(s, t) = Xi$
 $f(s, t) = xi$

by
$$G(X_1t) = F(+, 1-t)$$

toansitive: Sufficie
$$f \subseteq f'$$
 with homotopy F
and $f' \cong f'$ with homotopy G .
Then define $H: X \times I \rightarrow Y$ by
 $H(x,t) = \langle F(x,2t), o \leq t \leq \frac{1}{2} \\ G(x,2t-1), \frac{1}{2} \leq t \leq 1 \end{cases}$
Then $Hit The desired homotopy.$
(Show H is cont)
Examples: \star let $f,g: X \rightarrow R^2$ be cont.
Then $F(x,t) = (1-t)f(x) + t f(x)$ is a homotopy
from f to g .
Starght-line
homotopy

* let fig be Paths in IR? stouting from xo and ending at XI.

•

homotopy from ftog, so f ~pg. Is f ~ph? Intuitively NO. (Proven Later). We now introduce an algebraic operation. Def: If fis a path in X from Xoto XI and gis a path In X from XI to X2, then we define the product fxq to be the path h defined by: $h(s) := \begin{cases} f(2s) , & o \leq s \leq 1/2 \\ g(2s-1) , & = \leq s \leq 1/2 \end{cases}$ f xi g show that his cont. and so is a path from xo to x2. for a path & InX, let [f] be the equivalence Class containing f wit ~p. Called pathhomotopy class. The product operation induces a well defined operation on the path homotopy classes: $[f] \times [g] = [f \times g]$

To verify that * is well defined, we need to show that if $f' \subseteq p f$ and $g' \cong p g$, then $f' \times g' \cong p f \times g$. Show this.

2) (Right and left identity). Given XEX, let ex be the constant path exiI > X defined by ex(s) = X USEI.

If fish path from xo to x_1 , then $f(F) \neq [e_x] = [f]$ and $f(e_x_0) \neq [f] = [f]$

Show that p is also a homomorphism.

We say of Is an Esomorphysm.

Def: Let p: G, -3G2 be a homomorphism. The Kerrel of \$ is defined by Ker \$= {9EG, \$ \$(9)=e}

Show herp < G,

Posil-Lecture-Practice-Questions

 Do the exercises above
 Prove The Pasting lemma: Let A, B ⊆ X be closed sets and let g;: A→Y and gz: B→Y be continuous functions set. g1 | ANB = g2 | ANB.

Show that the function
$$f: AUB \rightarrow Y$$
 defined by
 $f(+) := \begin{cases} g_1(+), & X \in A \\ g_2(+), & X \in B \end{cases}$ is a well defined continuous function.

3) We will prove the theorem done in lecture regarding the Properties of *.

- a) let i: I → I be the identity function, which is also a path from 0 to 1 sn I. Show that any other Path in I from 0 to 1 is path homotopic to C. Hirt: I is convex.
- b) Let f be a path in X from xo to x_1 . Use (a) to show that $f = p \quad e_{x_0} \times f \quad \cong p \quad f \times e_{x_1}$. Conclude Statement (2) in the theorem.
- C) Show that any path from 0 to 0 in I is path homotopic to the constant path Co.
 Use this to show that f * F ~ p exo and F * f ~ p exi and F * f ~ p exi.
 Conclude statement (3) in the theorem.

d) Let f be a path from xo to X_1 . A reparametrization of the path f is another path for φ where $\varphi: I \rightarrow I$ is a pth from ϑ to Λ . Show that $f \simeq f \circ \varphi$.

e) Let fight be paths in X s.l. f(1) = g(u) and g(1) = h(u). Show That $(f \neq g) \neq h$ and $f \neq (g \neq h)$ are refarameterization of each other and hence path homotopic. Conclude statement (3) in thm.

4) Solve #3 in sections]