Algebraic Topology

Given two tolelogical space, we ush to know whether ornot They're homeomaptic.

Studying the topolorical frofeties/topological invarients is a way to decile if two spaces are howeomomple.

(stradying the cut ponts of coenspare)

$$
\mathbb{R} \neq \mathbb{R}^{2} \quad(\text { cutpoints })
$$

Some need newtor $/$ stechnitues.

 cont. deformed into a point.

Asface is simply connected if every closed cure combe deformed into a point.
$\left.\mathbb{R}^{2}\right)$ Point

(1) Cannot be deformed in to (2)

2 "different" cures

Studying all the "different" closed cures (loops) will introduce a new topological invariant That is more geneal then simple connectedness.

2 Curves are the "same" if one can be cont. de fared into the other. This willdefire on equivalence relation on The space of Cuves/paths. We will define anoreation on \{equirdence classes\} ~ giving it an algebraic structure (making it a group called the fundamental group). It will furn out that homeomorpluic spaces hare the "same" fundamental group.
This introduces a new tool to prove 2 spaces anent homomorphte (bystadusing their fundamental group).

Inshore, Algebraic topology is the study of topological spaces by means is algebraic objects.

Homotopy bp paths

Def: If $f, f^{\prime}: x \rightarrow y$ are continuous function, We say f ishomotpic to f^{\prime} if \exists cont map $F: X \times I \rightarrow Y$ st.

$$
f(x, 0)=f(x) \text { and } F(x, 1)=f^{\prime}(x)
$$

Foreach $x \in X$.
The map f is called a homotopy between f and f^{\prime}.

If is homotopic to f^{\prime}, we write $f \simeq f^{\prime}$. If $f \simeq f^{\prime}$ and f^{\prime} is a cons tart map, we say f is nulhomotofic.
f is a cont 1-parander family y mats from x to y.

$$
\begin{aligned}
t \longmapsto & F_{t}(: x \mapsto F(x, t)) \\
& f_{0}=f, F_{1}=f^{\prime}
\end{aligned}
$$

Def A contimuon $f: I \leadsto X$ is called a path in X. $x_{0}:=f(0)$ is called the initial point.
$X_{1}:=f(1)$ is called the final point.

Def: Two paths f and f^{\prime} are Path homotopic if They have the same initial and final point and There exist a cont map $F: \underset{\text { time }}{I} I \times \underset{\text { Paanamer }}{\rightarrow} X$ st.

$$
\begin{aligned}
& \quad f(s, 0)=f(s), \quad f(s, 1)=f^{\prime}(s) \\
& \quad f(0, t)=x_{0}, \quad f(1, t)=x_{1} \\
& \forall \text { sit } \in I .
\end{aligned}
$$

for every $t \in I$,

$$
F_{t}: s \longmapsto F(s, t)
$$

So $t \longmapsto F_{t}(s \mapsto F(s, t))$ is a cont 1-parameter family of paths all staring from to and ending at x_{1}.

We call f a path homotopy between fard f^{\prime} and we write $f \simeq_{p} f^{\prime}$.

Lemma: $\stackrel{\downarrow}{\simeq}$ and $\stackrel{\downarrow}{\simeq} p$ are equivalence relations.
Proof
Reflexive: Define $F: X \times I \rightarrow Y$

$$
f(x, t)=f(x)
$$

Symmetric: suppose $f \simeq f^{\prime}$ so \exists homotiply from f loft', Define $G: X \times I \rightarrow Y$
by $G(x, t)=F(x, 1-t)$
transition: Suppose $f \simeq f^{\prime}$ with homotopy F and $f^{\prime} \simeq f^{\prime \prime}$ with hombtory G
Then define $H: x \times I \rightarrow Y$ by

$$
H(x, t)= \begin{cases}F(x, 2 t), & 0 \leq t \leq \frac{1}{2} \\ G(x, 2 t-1), & \frac{1}{2} \leq t \leq 1\end{cases}
$$

Then His the desired homotopy.
(show H is Cont)

Examples: * let $f, g: X \rightarrow \mathbb{R}^{2}$ be cont.
Then $f(x, t)=(1-t) f(x)+t g(x)$ is a homotory from f tag.

$$
\sum_{\substack{\text { straight-line } \\ \text { homotopy }}}
$$

* Let f, g be Paths in \mathbb{R}^{2} starting from x_{0} and coding at x_{1}.

Define $F: I \times I \rightarrow \mathbb{R}^{2}$ by

$$
f(s, t)=(1-t) f(s)+t g(s)
$$

Then f is a homatopy from flog.
Then any two Paths with the same initial ard final point are homotopic.

More genearlly, any convex subset of \mathbb{R}^{n} will satisfy).

* Consider the punctured plane $\mathbb{R}^{2} \backslash\{(0,0)\}$

Define the following thee Paths:

$$
\begin{aligned}
& f(s):=(\cos \pi s, \sin \pi s) \\
& g(s):=(\cos \pi s, 2 \sin \pi s) \\
& h(s):=(\cos \pi s,-\sin \pi s)
\end{aligned}
$$

Observe $f(s, t)=(1-t) f(s)+t g(s)$ is a Path
homotopy from f tog, so $f \simeq p g$.
Is $f \approx p h$? Intuitively no. (Provenlater).

We now introduce an algebraic operation.
Def: If fir a path in x from x_{0} to x_{1} and g is a path in X from x_{1} to x_{2}, then wedefine the product $f * g$ to be te path h defined by:

$$
h(s):= \begin{cases}f(2 s), & 0 \leq s \leq 1 / 2 \\ g(2 s-1), & \frac{1}{2} \leq s \leq 1\end{cases}
$$

Show that h iscont. and so is a path from x_{0} to x_{2}
for a path $f \operatorname{in} X$, let $[f]$ be the equirdence Class conking f writ $\simeq p . \pi$ called pathnomotopy class.

The product operation induces a welldefired operation on the path homotopy classes:

$$
[f] *[g]=[f * g]
$$

To verify that $*$ is well defined, we need toshow that if $f^{\prime} \simeq p f$ ard $g^{\prime} \simeq p g$, then $f^{\prime} * g^{\prime} \simeq_{p} f * g$. Show this.

Theorem: Theoleration $女$ haste fallowing properties:

1) $($ Associativity $)([f] *[g]) *[n]=[f] *([g] *[h])$ whenever the above is welldetived.
2) (Right and left identity). Gran $x \in X$, let e_{x} be the constant path $e_{x} i I \rightarrow X$ defined by $e_{x}(s)=x \quad \forall s \in I$.

If fisc path from x_{0} to x_{1}, then

$$
[f] *\left[e_{x_{1}}\right]=[f] \text { and }\left[e x_{0}\right] *[f]=[f]
$$

$$
\left(f * e_{x_{1}} \simeq p f \quad \text { and } \quad e_{x_{0}} * f \simeq p f\right)
$$

3) (Inverse) Given a path f from x_{0} to x_{1}, define $\bar{f}: I \rightarrow X$ by $\bar{f}(s)=f(1-s)$ to be the reverse of f.

Then

$$
\begin{aligned}
& {[f] *[\bar{f}]=\left[e x_{0}\right]} \\
& {[\bar{f}] *[f]=\left[e_{x_{1}}\right]}
\end{aligned}
$$

Prove

Intro to Groups

Agroup is a set G together with an operation
: $G \times G \longrightarrow G$ Satisfying:

1) Associative. $(a \cdot b) \cdot c=a \cdot(b \cdot c)(=a \cdot b \cdot c)$
2) \exists an element $e \in G$ that Satisfies:

$$
g \cdot e=e \cdot g=g \quad \forall g \in G .
$$

e is called the identity.
3) $\forall g \in G, \exists h \in G$ sit. $g \cdot h=h \cdot g=e$ h is denoted by g^{-1} ard is called the inverse of g.

Ex: $(\mathbb{R},+)$ is a group. $\quad\left(e=0, g^{-1}=-9\right)$
$(\mathbb{R} \backslash\{0\}, \cdot) \quad\left(c=1, \quad g^{-1}=\frac{1}{g}\right)$
$(z,+)$ is agroul
$(I N, t)$ is not a group.

Def: H is a subgroup of G if $H S G$ and H is a group under the same operation defined on G.

Def: Let G_{1} and G_{2} be groups and $\phi: G_{1} \rightarrow G_{2}$ be a map. Wesay ϕ is a homomorphism (linear) if $\quad \phi\left(g_{1} g_{2}\right)=\phi\left(g_{1}\right) \phi\left(g_{2}\right) \quad \forall g_{11} g_{2} \in G$.

Def: G_{1} is isomorphic to G_{2} if \exists bijective homomorphism ϕ from G_{1} to G_{2}.

Show That ϕ^{-1} is also a homomorphism.
we say ϕ is an isomorphism.

Deft: Let $\phi: G_{1} \rightarrow G_{2}$ be a homomorphism.
The Herrel of ϕ is defined by $\left.\operatorname{Ker} \phi:=\left\{g \in G_{1} \mid \phi(g)=e,\right\}\right\}$
Show Her $\phi \leq G_{1}$

Posi-Lectare-Practice-Questions

1) Dothe exercises above
2) Prove The pasting lemma: Let $A, B \subseteq X$ be closed sets and let $g_{1}: A \rightarrow y$ and $g_{2}: B \rightarrow Y$ be continuous functions st. $\left.\quad g_{1}\right|_{A \cap B}=\left.g_{2}\right|_{A \cap B}$.

Show that the function $f: A \cup B \rightarrow y$ de fired by $f(x):=\left\{\begin{array}{ll}g_{1}(x), & x \in A \\ g_{2}(x), & x \in B\end{array}\right.$ is a well defined continuous function.
3) Wewill prove the theorem done in lecture regarding the Properties of $*$.
a) Let $i: I \rightarrow I$ be the identity function, which is also a path from 0 to 1 in I. Show that any other path in I from O to $\hat{\eta}$ is pathhomotopic to i.

Hint: I is convex.
b) Let f be a path in X from x_{0} to x_{1}. Use (a) to show that $f \approx p e_{x_{0}} * f \simeq_{p} f * e_{x_{1}}$. Conclucle Statement (2) in the theorem.
c) Show that any path from 0 to 0 in I is path homotopic to the constant path e_{0}.
Use this to show that $f * \bar{f} \simeq p e_{x_{0}}$ and $\bar{f} * f \simeq p e_{x_{1}}$ Conclude statement (3) in the theorem.
d) Let f be path from x_{0} to x_{1}. Areparametrization of the path f is another path fo φ where $\varphi: I \rightarrow I$ is acth from o to 1.
Show that $f \simeq f_{0} \varphi$.
e) Let $f 19, h$ be paths in X s.t. $f(1)=g(0)$ and $g(1)=h(0)$. Show that $(f * g) * h$ and $f *(g * h)$ are refaramatrization breach other ard hence path homotopic. Conclude statereert (3) in the.
4) Solve \#3 insectionsl

