× PS4 Sol are on Couse website. * Exam: Aug23 9AM-> 12PM

Topological Manifold

Molory Strip, Klein bottle, RPn

Def: We say a topological space X is locally Euclidean of dimension n if
$$\forall x \in X$$
, \exists a neighbol \cup of x and an open subset $\vee \subseteq \mathbb{R}^n$ and a homeomorphism $\phi: \cup \longrightarrow \vee$.

Proof: Hint: show X is regular.

It turns out that every n-monifold can be embedded in R²ⁿ!! (sharp result)

Det: Let
$$U = \frac{1}{2} U_{a}^{a}_{a \in S}$$
 be an open cover for a topological
Space X. A Partition of Unity Subordinate to U is
a family of continuous functions $V_{a}: X \rightarrow [o:1]$ indexed
by S and Satisfies;
i) supply $\subseteq U_{a}$ the ES, where $supply_{a} = \frac{1}{2} \times EX[\frac{1}{2} \frac{1}{2} (\frac{1}{2} \frac{1}{2} \frac{1}{$

Then The Collection & VI, UZI ..., Um Z is another open Cover. We proceed by induction: given open sets V VK-, s.t. EVIII VAL, UK, UNHIVE, Um] is another cover, we define $A = X \setminus (\bigcup_{i=1}^{n} V_i \cup \bigcup_{i=k}^{n} U_i)$,

Some shrunk $\{U_i\}_{i=1}^m$ to $\{V_i\}_{i=1}^m$ s.t. $V_i \subseteq U_i$.

Repeat This procedure to define another open cover & Wi Bi=1 s.t. Wi EVi

Vi Ui Then using Urysohn lemma, Choose breach i=1,-m a cont function $V_i: X \rightarrow CoiR$ satisfying $V_i(\overline{V_i}) = \{1\}$ and $V_i(V_i^c) = \{0\}$.

Define $\phi_i(x) := \frac{\psi_i(x)}{\mathcal{E}\psi_i(x)}$. Show that $\frac{1}{2}\phi_i \cdot \frac{1}{3} = i$ is the desired

Thm: Embeddingthm: Every compact n-monifold combe embedded in IR bersone NEW.

Post-Lecture - Practice - Questions

1) Do the exercises above. 2) We will prove the embedding Thm. Let X be an m-dim Compact manifold. a) Show that 3 an open cover \$Ui} and embeddings q:: Ui Rm for i=1,...,n b) let (pi 3i=1 be a Partition of unity subordinate to the open cover 2012, 1 for i=1..., n, define hi: X -> IR by $h_{i}(x) = \begin{cases} \varphi_{i}(x) g_{i}(x), & x \in U_{i} \\ 0, & x \in U_{i} \end{cases}$ Showthat hi is continuous. c) Defire F: X -> Rⁿ x (R^m)ⁿ by

 $f(x) = (q_1(x), \dots, q_n(x), h_n(x), \dots, h_n(x))$

3) Solve#5 in section 36.