* Assignment S.

Urysonn lemma: let A and B be dissont closed sets in a
normal topological space. B a continuetion
$$f:X \rightarrow [a:b]$$
 s.t.
 $f(A) = \{a\}$ and $f(B) = \{b\}$

Remark: Let
$$(X,d)$$
 be a metoric space. Then for disjoint
Closed sets A and B, we can define
 $f(r) = \frac{d(r,A)}{d(r,A)+d(r,B)}$. Show f sadisfies The conclusion
 $f(r) = \frac{d(r,A)}{d(r,A)+d(r,B)}$.

Def: Let X be a topological space and
$$\Lambda \subseteq \mathbb{R}$$
. A collection
of open sets $\{U_A\}_{A \in \Lambda}$ is said to be normally ascending
provided that for any $A_i : A_2 \in \Lambda$,
 $\overline{U_A}_i \subseteq U_{A_2}$ if $A_i < A_2$.

Example: Let $f: X \rightarrow R$ be continuous and let $\Lambda = R$. for $A \in R$, $U_A = f'(-\infty, A)$.

Then for any $A_1 \leq A_2$, $\overline{U}_{A_1} \leq \overline{f}'(-\sigma, A_1) \leq \overline{f}'(-\sigma, A_2) = U_{A_2}$ And so $\xi \cup_A \mathcal{Z}_{A \in \Lambda}$ is normally ascending. Lemma 1: Let X be a topological space. Let $\Lambda \subseteq (0,1)$ be dense in (0,1). Let $\frac{3}{3}\chi_{AE\Lambda}$ be a collection of open sets that are normally ascending. Define the function $f: X \rightarrow IR$ as follows:

$$f(A) = \begin{cases} 1, & x \notin \bigcup_{A \in A} \cup_{A} \\ \inf_{A \in A} \int_{A \in A} \int_{A} \int_{A \in A} \int_{A \cap A} \int_{A \in A} \int_{A \cap A} \int_$$

Then f: X-> Coil is Continuous.

Proof: let (a,b) be an arbitrony interval.

$$f^{-1}(a,b) = \bigcup \bigcup_{A} \bigcup_{\max\{a,b\}} (show this)$$

 $A \in A \cap (a,b)$
(show $\bigcup_{A} = f^{-1}(-\sigma,A)$)

Proof: let Λ be the dyadic rationals: $\Lambda := \left\{ \frac{m}{2n} \right\} m_{in} \in \mathbb{N} \left\{ m \leq 2^{n} - 1 \right\}$ Which is dense in (0.1), (show this)

We will inductively define a sequence of collections of normally according open sets EUAZAEAn, where $ni=\frac{2}{2n}|_{menn}^{m \leq 2-1}$

Choose an open set U_{Y_2} s.t. $A \subseteq U_{Y_2} \subseteq \overline{U}_{Y_2} \subseteq U$

Then we have defined 2023 AEN,

Since Aisclosed and U_{Y_2} is a neighted of A, we can Choose anopen set U_{Y_4} s.t. $A \subseteq U_{Y_4} \subseteq U_{Y_4} \subseteq U_{Y_2}$.

Since Uyz is a closed set and U is a neighbol of Uyz, we can Choose an open set U3/4 s.t.

$$\overline{V_{12}} \subseteq V_{3/4} \subseteq \overline{V_{3/4}} \subseteq U$$

So $A \subseteq V_{1/4} \subseteq \overline{V_{1/4}} \subseteq V_{1/2} \subseteq V_{3/4} \subseteq \overline{V_{3/4}} \subseteq U$
Then we have extended the normally ascending collection $\{V_{A}\}_{A \in A_{1}}$
to the normally ascending collection $\{V_{A}\}_{A \in A_{2}}$
We proceed inductively to define for each $n \in M$, a
normally ascending collection $\{V_{A}\}_{A \in A_{1}}$.
Observe that The union of those collections is
a normally ascending collection $\{V_{A}\}_{A \in A_{1}}$.
So $\{V_{A}\}_{A \in A}$ is the desired collection.

Now we can prove Urysohn Lemma!

Proof: Let A and B be disjoint closed sets in a normal to P. space X.

Let
$$U = B^{c}$$
, which is a neighbol of A .
(A) (B) Using Lemma 2, we can find a normally
ascending collection A open sets $\{U_{A}\}_{A \in A}$
st: $\Lambda = \{absach c rationalis\}$ and $A \subseteq U_{A} \subseteq U_{A} \subseteq B^{c}$
 $\forall A \in A$.

Then the continuous function $f': X \rightarrow Cort from Lemmal$ is the desired function.

$$\begin{aligned} f(B) &= \{R\} \text{ by construction.} \\ \text{If } x \in A, \text{ then } x \in U_{A} \text{ by } A \in A = s \text{ for sinf } A \in A \text{ [xev}_{A} \} \\ &= 0 \\ \end{aligned} \\ = > \quad f(A) = \{o\} \end{aligned}$$

Urssohn Lemma is on extension thm: Let f: AUB -> [OB] defined by f(A)= {0} and f(B)= {1}

Ø

Which is a continuous function. Ury solan Lemma ascerts That 3 a cont extension $\tilde{F}: X \rightarrow COM$

Tietze Extension Thm: let Xbe a normal space, A⊆X
be a Closet set, and f:A→ [41b] be a continuous function.
Then Ba cont extension
$$\tilde{F}: X \to fa, b$$
]

Proof: Assume whoy that laib = [-1,1]

We will construct a sequence of cont functions $g_n: X \rightarrow E-1/1$ Satisfying:

for nell, $|9n| \leq \left(\frac{2}{3}\right)^n$ on χ $|f-\underset{\mu=1}{\underset{\mu=1}{\overset{}{\underset{\mu=1}{\underset{\mu=1}{\overset{}{\underset{\mu=1}{\underset{\mu=1}{\underset{\mu=1}{\overset{}{\underset{\mu=1}{\underset{\mu=1}{\overset{}{\underset{\mu=1}{\underset{\mu=1}{\overset{}{\underset{\mu=1}{\underset{\mu=1}{\overset{}{\underset{\mu=1}{\underset{\mu=1}{\underset{\mu=1}{\overset{}{\underset{\mu=1}{\atop{\mu}{1}{\atop{\mu}{$

Claim: Gra> and Cont function h:
$$A \rightarrow IR$$
 s.t.
 $IhI \leq a$ on A , $\exists a \text{ cont function } g: X \rightarrow IR$
Satisfying $IgI \leq P(g)a$ on X
and $|h-g| \leq P(g)a$ on A .

proof of Claim: Let Fi:= h' [-a, 3] and

$$f_2 := h^{-1} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$$
 which are disjoint closed sets.

By Unscohn Remma, there is a continuous function 9:X > [==== 3, == 3, = 3, == 3, == 3, == 3, == 3, == 3, = 3

, a }

Then
$$191 \leq \binom{2}{3}$$
 and $1h-91 \leq \binom{2}{3}q$
on χ on A show this:
take cases
 $x \in f_1, x \in f_2, x \notin f_0 f_2$

Applysthe claim for
$$h=f$$
 and $a=1$ to find a cont
function $g_1: X \rightarrow R$ satisfying

19,1≤3 on X and If-9,1≤3 on A.

We apply the claim again for
$$h = f - g_1$$
, and $a = \frac{2}{3}$
to find a cont function $g_2 : X \rightarrow IR$ satisfying
 $|g_2| \leq \left(\frac{2}{3}\right)^2$ on X and $|f - g_1 - g_2| \leq \left(\frac{2}{3}\right)^2$ on A.

Proceed inductively to define a sequence 3n: X->R

$$\int \text{Continuous functions satisfying}: * [9n] \leq (\frac{2}{3})^n \text{ on } \chi * [f - \frac{2}{N-3}s_k] \leq (\frac{2}{3})^n \text{ on } A Then define $\tilde{F}: \chi \to R$ by
 $\tilde{F}(\chi) := \sum_{N=1}^{\infty} 9n(\chi)$ which converges uniformly
 and so \tilde{F} is continuous. (The will be a Post-Recture
 Practice-question to help you
 Prove this)$$

and
$$\tilde{F} = f$$
 on \tilde{A} since for each $x \in \tilde{A}$, we
have that $|f(x) - \frac{2}{n} q_n(x)| \leq \frac{2}{3}n$ $\forall n \in N$
and hence $|f(G) - \tilde{f}(G)| \leq 0 = \int f(G) = \tilde{f}(G)$
 $\therefore \tilde{F}$ is the desired extension.

The next consequence of Urysohn Lemma is
a metrituation than:
Urysohn Metrituation than:
Let X be second countered space. Then X is metritude
iff X is normal.
Proof: (=>)
$$2$$

((=) Suppose X is normal and second countered
Let $2Un 3new be a countered basis.$
Define $A := \frac{1}{2}(n_1m) \in M^2$) $Un \leq Um 3$
A is nonempty (show this)
for each (n,m) $\in A$, by Urysohn Lemma, there is a continuous
function from : X > $Eo(1)$ set.

$$f_{(n,m)}(\overline{U_n}) = \{o\} \text{ and } f_{(n,m)}(\overline{U_m}) = \{1\}$$

for $X, Y \in X$, $define \ d(X, Y) := \sum_{(n,m) \in A} \frac{1}{2^{n+m}} \left[f_{(n,m)}(x) - f_{(n,m)}(y) \right]$

Show that dis indeed a metric.
To show that the topology induced by d is the given topology on X,
we need to prove:
(D) for
$$x \in U_K$$
, $\exists z \ge 0$ site $\exists_z(x) \leq U_K$
(E) for $z \ge 0$ and $x \in X$, $U_K \leq B_z(x) \leq U_K$
(D): let $z = \frac{1}{2^L}$, then $y \in B_{Y_K}(x)$
 $=) \frac{1}{2^{n_{m}}} |f_{(n_{m})}(x) - f_{(m_m)}(y)| \leq \frac{1}{2^L}$ frim e/W .
 $=) \frac{1}{2^{n_{m}}} |f_{(n_{m})}(x) - f_{(m_m)}(y)| \leq \frac{1}{2^L}$ frim e/W .
 $=) \frac{1}{2^{n_{m}}} |f_{(n_{m})}(x) - f_{(m_m)}(y)| \leq \frac{1}{2^L}$ frim e/W .
 $=) \frac{1}{2^{n_{m}}} |f_{(n_{m})}(x) - f_{(m_m)}(y)| \leq \frac{1}{2^L}$ frim e/W .
 $=) \frac{1}{2^{n_{m}}} |f_{(n_{m})}(x) - f_{(m_m)}(y)| \leq \frac{1}{2^L}$ frim e/W .
 $=) \frac{1}{2^{n_{m}}} |f_{(n_{m})}(x) - f_{(m_m)}(y)| \leq \frac{1}{2^L}$ frim e/W .
 $=) \frac{1}{2^{n_{m}}} |f_{(n_{m})}(x) = 0$ and $f_{(n_{m})}(x) = \frac{1}{2^L} |f_{(m_m)}(y)| \leq \frac{1}{2^L}$ y
 $which is a contradiction$
 $=) \frac{1}{2^L} e_{B_Z}(x) = 1$ $\sum U_E U_R$ and D_M
Check fost - Lecture - Question ± 4 .

The characteristic prestriction the state of the characteristic prestriction that
$$F: X \to R^A$$
 defined by $F(X) = (f_{cn,m})_{cn,m} \in A$ is an embedding showing that X is homeomorphic to assubset of R^M and hence X is metorizable.

Post-lecture-Practice-Questions

1) Dothe exercises above.

2) let
$$a_{ib}e(o_{i1})$$
, $a \angle b$.
a) show that $\exists n \in \mathbb{N} \text{ s.t. } 2^{n}(b-a) \ge 1$
b) show $\exists m \in \mathbb{N} \text{ s.t. } m < 2^{n}(b-a) \le m \neq 1$

C) Show that
$$\Lambda = \frac{2}{2n} | m_i n e l N$$
, $m \leq 2^n - 1 \frac{3}{2}$ is dense in (0,1).

a) show that if fn
$$\rightarrow$$
 f uniformly, then fis continuous.
Hint: Let (a1b) $\leq \mathbb{R}$ and let $\chi \in f'(a_{1b})$.
Argue that $\exists N \in \mathbb{N}$ and $\$ \geq 0$ s-t- $\chi \in f_N^{-1}(f(x) - s, f(x) + s)) \leq f(a_{1b})$.

4) We will prove (1) in the proof of Urycohn Metrizection thm

Argrethed
$$\exists m \in M$$
 s.t. $(m, K) \in A$
b) let $U = f_{(m,K)}^{-1} ([c_1 \frac{1}{2})]$. Show that $x \in U \subseteq U_K$
c) For $\varepsilon = \frac{1}{2^{m+K+1}}$. Show that $B_{\varepsilon}(x) \subseteq U \subseteq U_K$.
5) We will prove (1) in the proof of the metrization thm.
let $\varepsilon \ge 0$ and $x \in X$. We wish to show that $U_K \subseteq B_{\varepsilon}(x)$
for some $K \in M$
a) Let $L \in M$ s.t. $\frac{1}{2^{\varepsilon K}} < \frac{\varepsilon}{8}$.
Let $U = (\bigcap_{\substack{(m,n) \in A \\ m,n \leq K}} f_{(m,n)}^{-1} ([c_1 \frac{\varepsilon}{2})])$ which is often in X .
Show that $U \subseteq B_{\varepsilon}(x)$

b) Conclude that $U_{\mathcal{U}} \subseteq B_{\xi}(x)$ for some $K \in \mathbb{N}$. Let $y \in U$.

6) Write the collection & from Brown From The Proof of the metrization than as & gn 3n ell. Define the map F: X -> R'' 57 $F(x) = (g_n(x))_{n \in M}$ Show that F(U) is den in F(X) whenever Uisden. Conclude that Fisan embedding and that X is metri zable. 7) let X be a normal space and let A bea closed set. let f: A -> IR bea Continuous function. a) Apply the Tietze Extension thm to obtain a 5) Apply the Unsiohn lemma to obtain a continuous function \$: X -> 6,13 s-t. \$(A)=\$13 and \$(K'(1)) } {0}. c) Show that 7 continuous extension F: X→R of f. $(Consider \tilde{f} = \frac{\phi h}{h})$

8) Solve #3 - #5 in Section 34. 9) Solve #3 - #4 in Section 35