* Mistake in Rast lecture. Stone - Čech compactification of (01) Is not the topologyil's sine cure.

The separation artions.

A that doesn't contain x, 3 continuous function $f: X \rightarrow Coil 3$ 5.2. f(x)=0 and $f(A) = \{i\}$.

fareach d G D, let
$$I_{z} = [\inf f_{z}(X), \sup f_{x}(X)]$$

Let $U \subseteq X$ be an openset. We want to show h(U) is open in h(x)Let $Z_0 \in h(U)$; then $Z_0 = (f_0(x_0))_{0 \in T}$ for some $X_0 \in U$. Since X is completely regular, \exists a cont function $f: X \rightarrow Cort S$ set. $f(X_0) = 0$ and $f(U^c) = \{T\}$ Since fis bounded, $f = f_{\mathcal{B}}$ for some $\mathcal{B} \in \mathcal{J}$.

Let $W = \Pi_{\mathcal{B}}^{-1}(Co,1)$ (h(X) which is an open nershid of \mathcal{B}_{0} . Let $\mathcal{E} \in W$; then $\mathcal{B} = (f_{a}(a))_{d\in T}$ for some $x \in X$. Since $f_{\mathcal{B}}(x) \neq 1$, it follows that $x \in U$ since $f_{\mathcal{B}}(U^{C}) = \xi I_{s}^{2}$ and $f_{\mathcal{B}}(x) \neq 1$. And so $W \leq h(U)$.

...
$$h: X \to \underset{aes}{\text{T}} F_{aes}$$
 is an embedding. Let Y be the
Complectification of χ induced by h (recall $Y \cong h(x)$) and so
 \exists an embedding $H: Y \to \underset{aes}{\text{T}} F_{aes}$ s.t. $H|_{\chi} = h$ (due to this from)
last kecture)

We claim that Y is the desired compactification. Let
$$f_X := R$$
 be
a bounded continuous function. Then $\tilde{F}_X := TT_X \circ H$ is the desired extension.
 \tilde{F}_X is unique due to the following lemma:
Lemma: Let $A \subseteq X$ and let Y be Hausdorff. Let $f: A \rightarrow Y$ be
a continuous function. Then f has at most one continuous extension
 $\tilde{F}: \widetilde{A} \rightarrow Y$. (Show this)

Let f: X → C be a continuous function. We can write f= (fa)aEJ where fa: X → EorlJ. Since each fais bounded and cont, it can be uniendly extended to a cont function Fa: Y → EorlJ. Define F: Y → C by F(x) := (Fa(x)) which is the desired extension. (Show that F is cont). Proposition: The Stone - Čech Compactification 1s Unique up to Equivalence.

Proof: Let y₁ and y₂ be two compactifications with The property described in the existence thm.

Then finfz: $Y_1 \rightarrow Y_1$, satisfies find $\chi = Id|_X$

This implies that
$$f_1$$
 and f_2 are homeomorphisms S.Z.
 $f_1|_{\chi} = Id$ and $f_2|_{\chi} = Id$. We conclude S_1 and S_2 are equivalent.

From tinuous surjective closed map
$$g: B(X) \rightarrow g$$

s.t. $g|_X = Id$.

Provethys

Post-lectur - Practice-Questions

1) Do the exercises above

2) Let X be Completely regular. Show that B(X) is Connected iff X is connected.

4) Solve #8 and #9 in Manking Section 38.