
 Mistake in last lecture Stone tech compactification of al

is not thetopologist's Sine curve
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Hausdorff regular completely normal

regular

completely
normal

AT space is completelyregular if forevery Xe X and every closed set

A that doesn't contain x 7 continuous function fi XT lot s t

f x O and f A 93

theorem Let X be a completely regular space There exists a

compactification Y called't stone tech compactification ofX with

Theproperty that every bounded continuous function fi XT IR can

beuniquely extended to a continuous function onY into R

Proof Let f
yes

bethe collection of all bounded cont functi

from X to IR



foreach LET let Ia inffa x supfact

We define h X Ia by ha fact set

We claim that h is an embedding

h is continuous since thecomponent fa are allcontinuous

hisinjective let x g F acont f Xs on at fax oandfly

Since f is bounded f fp for some BET Since fp x fily

we have that CfaIN ae fay yes
h Xs hex is open

let VEX be an openset Wewant toshow hw isopen in h x

let Z EhCU then Z fact act forsome Xo EU Since Xi completely

regular F acont function f X Coil r t f Xo o and floe 43

Since f is bounded f fp forsome BE J

Let W Ti Coli A h x which is an open neighbdofZo

Let ZEW then 2 focal get forsome xeX Since fpG It it

follows that X EV since fp Oc 93andfp x 9 And so WE ha

i h X If It is an embedding Let y be the
Compactification of X induced by h recall Y I ha andso

7 an embedding H Y IIIa s t.lt
x hfduetothm

from

lastlecture



We claimthat Y isthe desired compactification Let faith R be

abounded continuous function Then Fai Tao H isthedesired extension
Fa is unique due to thefollowing lemma
Lemmy Let A EX and let y be Hausdorff Let f A Y be

A continuous function Then f has at most one continuous extension

F I Y Showthis

Corollary

Embeddingthm Let t be completely regular Then

X canbeembedded into Co DJ for sones

Corollary let X be completely regular Let Cbe any
Compact Hausdorff space Let Y be the Stone tech Compaitific

Thenany cont function f N C canbe uniquely
extended from Y into C

Proof C is compact Hausday Cisnomal

C is completely regular

by Urysohn's lemma

So F an embedding h C Colts
Assume whos that CE Cort



Let f X C be a continuous function We can

write f fa a EJ where fai X Coil

Since each fr is bounded and cont it can be uniquely
extended to a cont function Fa y old

Define F 9 C by f x fact which is

the desired extension showthat I is cont

Proposition The Stone tech compactification is
unique up to equivalence

lety and 92 be two compactification with
The property described in the existence thin

let I X Y and iz its To be
the inclusion maps
Since y is a compact Hausdorff space by corollary 7

Cont extension fi 429 Y
Since Yz is a compact Hausdorff space Similarly 7
Cont extension fr T 92

Then f of 2 Y Y satisfies frfr y Idly



Since Id 4 s Y is a continuous extension of fish
Then fiof Id by the uniqueness of continuous extensions

by lemma above Similarly fr of Id

This implies that f and fr are homeomorphisms s t

fily Id and fly Id We conclude Y and Tz are
equivalent

for a completely regular spacex we denote the
stone tech compactificationby B X

Proposition Let X be completely regular

Blt is The maximal compactificationofX in the sense
that if Y is a compactification of X then

7 continnan Surjective closed map g Bex y
s t 91 Id

Provethil



Post Lecture Practice Questions

1 Do the exercises above

2 Lett be completely regular Show that Box is

connected if f X is connected

3 Let X be a discrete space
a Show that X is completelyregular
b showthat forany A Ex I andAT are

disjoint where the closures are taken in B x

c Show that if U isopen in Bex then J isopeninPK
d show that Blt is totally disconnected


