* Assignment 4 is due today by SPM.

Separation Axions

We have studied: Ti: Aspace is Ti IF HX1YEX set. X4Y, 3 neighted U Ax That doesn't contain y.

T2: Hausdorff.

Def: Let X be a Tispare. X is regular (T3); f for each Pair of disjoint closed sets A and B, where A is a singleton, 3 neighbods of A and B that are disjoint. Let X be a Tispare. Xis Normal (T4) if for each Pair of disjoint closed sets A and B, 3 neighbods of A and B that are disjoint.

lemma T, C= T2 L= T3 C= T4

(2=) Let $x \in X$ and A be a closed set that doesn't contain x. Then A^{C} is a republic of X and so \exists neighbol $V \notin x$ s. C. $\overline{V} \subseteq A^{C}$. Then V and \overline{V}^{C} are disjoint neighbols of $\xi_{T}^{2}S$ and A restectively.

Examples: i) Define R_K to be R equipped with the topological space generated by the basis $B = \frac{1}{2}(q_1b) | a < b$? $U \leq (a_1b) \setminus K | a < b$? where $K = \frac{1}{2} | n \in \mathbb{N}$?

desired opensets. (Show that U and U are disjoint)

Prove:
Let
$$L = \{(X_{1}-X) \in \mathbb{R}_{k}^{2} \mid X \in \mathbb{R}\} \subseteq \mathbb{R}_{k}^{2}$$

Lisclosed in \mathbb{R}_{k}^{2} and has the discrete topology.
Then became $A \subseteq L$, A and $L \setminus A$ are
Closed in L and $S \subseteq I$, A and $L \setminus A$ are
Closed in L and so in \mathbb{R}_{k}^{2} .
Suppose \mathbb{R}_{k}^{2} is normal.
Then for every nonempty proper subset $A \not A \downarrow$, \exists disjust
neighbods U_{A} and $V_{A} \not A$ and $L \setminus A$.
Let $D = \mathbb{R}_{k}^{2} \cap \mathcal{A}$ which is dense in \mathbb{R}_{k}^{2} .
We define a map $F : \mathbb{P}(L) \longrightarrow \mathbb{P}(D)$ by
 $f(A) = \{\begin{array}{c} U_{A} \cap D \\ 0 \end{array}, \begin{array}{c} A \pm U_{k} D \\ 0 \end{array}, \begin{array}{c} A \pm U_{k} D \\ 0 \end{array}$

Then F is in Sective. Show this. => IP(R)= IP(LS) < [P(DS] = [R] contradiction.

B

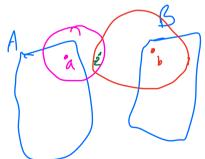
What guarantees Normality.
Theorem 1: Every Second Countable regular space
is normal.
Proof: Let B be a countable basis.
Let A and B be dissolve classed sets.
For each a E A, 3 neighted Ua of a s.l. U.a C B^C.
For each b C B, 3 neighted Ua of a s.l. U.a C B^C.
For each b C B, 3 neighted Ub of b s.l.
$$V_6 \subseteq A^C$$

For each a and b, Pick a basis neighted of a and b that
is contained in Ua and Ub respectively.
Let $\Sigma U_n | new 3$ and $\Sigma | U_n | new 9$ be the collection
of neighteds that we defined.
 $U = \bigcup_{new 9} U_n$ and $V := \bigcup_{new 9} V_n$ are neighteds of
A and B but are not necessarily disjoint.

Define
$$U'_{n} = U_{n} \setminus (\bigcup_{k=1}^{n} \overline{V_{n}})$$
 both open
 $V'_{n} = V_{n} \setminus (\bigcup_{k=1}^{n} \overline{U_{n}})$ both open
Then $U'_{i} = \bigcup_{n \in \mathbb{N}} u'_{n}$ and $V'_{i} = \bigcup_{n \in \mathbb{N}} V'_{n}$ are The
desired neighbods. Show a) $\bigcup_{n \in \mathbb{N}} u'_{n}$ and $\bigvee_{n \in \mathbb{N}} u'_{n}$ are neighbods of A
b) $\bigcup_{n \in \mathbb{N}} (V'_{n} = p)$

Theorem?: Every metritable space is normal. Proof: Let (X,d) be a metric space. Let A and B be disjoint closed sets.

For each $a \in A$, $\exists \epsilon_a > 0 \text{ s.t.} B_{\epsilon_a}(a) \subseteq B^{c}$ For each $b \in B$, $\exists \epsilon_b > 0 \text{ s.t.} B_{\epsilon_b}(b) \subseteq A^{c}$



Let $U := \bigcup_{a \in A} B_{\epsilon_a}(a)$ and $V := \bigcup_{b \in B} B_{\epsilon_b}(b)$

Then
$$d(a,b) \leq \frac{\epsilon_a + \epsilon_b}{2}$$
 by the triangle inequality
 $\leq \epsilon_b$ assuming $W\log \epsilon_b \geq \epsilon_a$
 $d(a,b) \leq \epsilon_b \Rightarrow a \epsilon B\epsilon_b(b)$ which is a contradiction.

Let X be a normal space. Let A and B be disjoint closed subsets of X.

3 a continuous function
$$f: X \rightarrow Soll$$

sit: $f(x)=0 \forall x \in A$ and $f(x)=1 \forall x \in B$
 $(A \subseteq f^{-1}(0) \text{ and } B \subseteq f^{-1}(1))$

Def: AT, space X is completely regular (T3.5) if for each $x \in X$ and each closed set A not containing X, \ni continuous function $f: X \rightarrow Corr$) s.t. f(x) = 1 and $f(A) = \frac{2}{6}o_{3}^{3}$.

Lemma:
$$T_{3,5} \Longrightarrow T_3$$
. $f'(c_0, l/2)$ and $f'(l/2, l)$
are the desired neighbolds.

* A Compactification of a topological spare is a compact Hausdorff space y s.t. Xisa subspace and X = y.

* If Xis Non comfact locally comfact Hausdorff,

Then it admits a unique one point Compactification, which is a Compactification Y & X s.l. YX is a singleton.

Lemma: Suppose
$$f: X \to Z$$
 is an embedding
of X into a compact Hausdorff Space Z.
Then F a compactification $G g X$; it has the
Property that there is an embedding $F: Y \to Z$
Sil. $F|_X = f$. The compactification g is an iercly
determined up to equivalence.

Recall: "I and "I' are equivalent compactifications of X if
B homeomorphism
$$g: Y \rightarrow J'$$
 S.Z. $g|_{x} = Id$

We call 9 The compactification induced by The embedding f. Prove this

- Ex: \bigcirc Let $f:(o_1) \rightarrow S'$ defined by f(t) = (costret, Sintret). Then fiscan embedding and S' is The compactification induced by f, which is equivalent to the one - Point (omfactification $f(o_1)$.
 - (2) X = (0,1). Then Y = [0,1] is another Compactification of X that distinct from the one above.

Question: If Yis a compactification of X, under what conditions can a continuous real-valued function on X be extended continuously to Y?

A necasary condition on f is that it has to be bounded.

For CX (1): Sufficient Conditions; *f is tounded and necessary * lim f = lim f

Post-lecture - Practice - Questions.

b) show X is not normal and hence not metrizable. Hint: let A = {(a,o) | a \in Q } and B = {(a,o) | a & Q }

* If $(x_{13}) \in X$ and $y \ge 0$, then $\{(x_{13})\} \in B$ * For each $x \in \mathbb{R}$, let $M_{x} = \{(x_{13}) \mid 0 \le y \le 2\}$, $N_{x} = \{(x_{13}) \mid 0 \le y \le 2\}$

and
$$P_X$$
 be a finite subset of $(M_X UN_X) \setminus \{ (X_{i0}) \}$.
Then $(M_X UN_X) \setminus P_X \in \mathcal{B}$
Show that X is regular but not completely regular.

- 6) Show that Completely regular is abitially productive and hereditary.
- 7) Let A be a compact subset of a regular space and let U be a neighbol of A. Show B a reighbol V of A 5.2. VEV.
 - 8) AT is space is normal iff for each pair of disjoint closed sets A and B, I neighbods U and V of A and B respectively s.t. $\overline{U}(\overline{NV} = \phi)$.
- 9) Every Closed Subset of a normal space is normal.
- let fi (01) >R be a bounded continuous function.
 let y1=S', y2 = Co12, y3 = topologist's Sine curve be three compactifications of (011).
 a) Show y1, y2, y3 are not equivalent