* Deadline for Ass 4 ispushed to Wednesday SIM and Problem 4 isremored.
* Reading from last week (skip parts wedidn't cover)

Tschon off The

How did we prove $X_{1} \times X_{2}$ is compact if X_{1}, X_{2} are compact?

* Begin with an opencore for $x_{1} \times x_{2}$
* find a finite subcove, for $\{x\} x y$ for each $x \in X$ as $\{x\} x y \cong y$ iscorvant.
* Construct a finite subcover for $x \times y$.

Alternate approach: We will vie
Xiscompact \Leftrightarrow Every collection of Closed sets with the finite intersection property has a nontrivial intersection.

Let's first use this proof toprove that $x_{1} \times x_{2}$ is compact wherever x_{1} and x_{2} arecompaid.

Let it beacollection of closed sets in ${ }_{1} x_{1} x_{2}$ with the finite intersection property.

Then $A_{1}=\left\{\overline{\pi_{1}(A)} \mid A \in A\right\}$ and $A_{2}=\left\{\overline{\pi_{2}(A)} \mid A \in A\right\}$ are collections of closed sets in X_{1} and X_{2} respectiody with the finite intersection property.
By compactness $1 x_{1}$ and $x_{2}, \exists x_{1} \in \bigcap_{A \in \mathcal{A}} \overline{\pi_{1}(A)}$ and $x_{2} \in \bigcap_{A \in \mathcal{A}} \overline{\pi_{2}(A)}$.
will $\left(x_{1}, x_{2}\right) \in \bigcap_{A \in L} A ?$ Nat necessarily.
One may to thunk about it $\left\{\overline{\pi_{1}(A)} \times \overline{\pi_{2}(A)} \mid A \in C\right\} \notin A$
Also, elements in A are not of the form $A_{1} \times A_{2}$ where A_{1} and A_{2} areclosed. (Exc: if all the elements inct are indeed of this form, then

$$
\left.\left(x_{1}, x_{2}\right) \in \bigwedge_{A \in U t} A\right) \text {. }
$$

Think of anexandle in \mathbb{R}^{2}

Hecerstic Argument:

If $u t$ is a collection of sects with the finite intersection property sit. it's "as big as possible".

Let $x_{1} \in \bigcap_{A \in \mathcal{A}} \widehat{\pi_{1}(A)} \quad x_{2} \in \bigcap_{A \in L t} \overline{\pi_{2}(A)}$.
Let U_{1} be any neigh d of x_{1}, then $U_{1} \times X_{2}$ intersects every setin A. Since otis as big aspossible, $U_{1} \times X_{2} \in A$.
Similarly $X_{1} \times U_{2} \in u$ for every neighbd U_{2} of x_{2} in X_{2}.

$$
U_{1} \times U_{2}=\left(X_{1} \times U_{2}\right) \cap\left(U_{1} \times X_{2}\right) \text { that also must be }
$$ an element in \mathcal{A}.

In particular $U_{1} x U_{2}$ intersects A forever $A \in c t$. $\Rightarrow\left(x_{1}, x_{2}\right) \in \mathbb{A} \quad \forall A \in C A$.

Def: Let X beaset. Let D beacollection of subsets of X. We say D is maximal writ the finite intersection property it

1) Dhas the finite intersection property
2) No collection of subsets of X that properly Contains D haste finite intersection property.

Lemma 1: Let X beaset. Let A be a collection of subsets of X with the finite intersection property. There is a collection D That contains LA and is maximal writ finite intersection properly.

Lemma 2: Let D be collection of subsets of X That is maximal writ finite intersection property.

1) If $A \subseteq X$ That intersects ereryelement in D, then $A \in D$.
2) Any finite intersection of elements in D is in D.

Proofs

Lemma 3: Let $X=\prod_{\alpha \in S} X_{\alpha}$.
Let Dee a collection of subsets of X That is maximal wot finite intersection properly.
Suppose $\bigcap \overline{\pi_{\alpha}(D)}$ is nonempty $\forall \alpha \in J$. $D \in D$

Let $\left(x_{\alpha}\right)_{\alpha \in J} \in X$ st. $\quad x_{\alpha \in} \bigcap_{D \in D} \overline{\alpha_{\alpha}(D)}$
for $\alpha \in J$.

$$
\text { Then }\left(x_{\alpha}\right)_{\alpha \in J} \in \bigcap_{D \in D} \bar{D}
$$

Proof:

$$
U_{\alpha}\left(\pi_{\alpha}(D) \neq \phi\right.
$$

let $\alpha \in J$. Let U_{α} be an arrititary $\int_{\text {neighs of }}^{\text {of }}$ x_{2} in X_{2}. Since $* \mathbb{T}_{\alpha}(D) \forall D \in D$, where that $\pi_{2}^{-1}\left(U_{\alpha}\right) \cap D \neq \phi$ for every $D \in D$.

And so by lemma 2, $\pi_{\alpha}^{-1}\left(U_{\alpha}\right) \in D$
Since every basis neighbored of $\left(x_{k}\right)_{\alpha \in J}$ is an intersection of finitely mary sets of the form $\pi_{2}^{-1}\left(O_{\alpha}\right)$ Where V_{α} is a neigh of x_{α}, it fallows by dermal that every basis neighted is in D.
\Rightarrow Every basis neishbd of $\left(x_{x}\right)_{\alpha \in J}$ intersects every element in D

$$
\Rightarrow \quad\left(x_{\alpha}\right)_{\alpha \in J} \in \bar{D} \quad \forall D \in D
$$

Tychonolf Theorem:
Compactest is arbittraity productive.
Proof: Let $\left\{x_{2}\right\} \alpha \in J$ be a collection of compact spares. Let $x=\prod_{\alpha \in J} x_{\alpha}$.

Let Abe a collection of closed sets with the finite intersection property.

By Lemma 1, \exists collection D of subsets $A X$ containing $L A$ ard is maximal wot the finite intersection properly.

By Compactness of X_{α}, the collection $\left\{\overline{T_{\alpha}(D)} \mid D \in D\right\}$ hare a nontrivial intersection for each $\alpha \in J$.

$$
\text { Let }\left(x_{\alpha}\right)_{\alpha \in J} \in X \text { st. } x_{\alpha} \in \bigcap_{D \in D} \widetilde{\pi_{\alpha}(0)}
$$

then by lemma $3,\left(x_{\alpha}\right)_{\alpha \in J} \in \bar{D} \quad \forall D \in D$

$$
\Rightarrow\left(x_{\alpha}\right)_{\alpha \in J} \in \bar{A}=A \quad \forall A \in \mathcal{A}
$$

And so At hasa nontrivial intersection. we conclude X is compact

Post-lecture - Practice - Question

1) Do the above exercises.
2) Let Abe the collection of all closed elliptical regions bounded by ellipses in $[0,1]^{2}$ that hare the point $p=\left(\frac{1}{3}, \frac{1}{3}\right)$ and $q=\left(\frac{1}{2}, \frac{2}{3}\right)$ as their foch.
a) Verify that it has the finite intersection property. Find the intersection of alltesets in At .
b) Find apont $(x, y) \in[0,1]^{2}$ sit. $x \in \bigcap_{A \in u t} \overline{\pi_{1}(A)}$ and $y \in \int \widehat{T_{\mathcal{F}}(A)}$ but $(x, y) \& \bigcap_{A \in \mathcal{A}} A$.
c) Show that A is not maximal wry the finite intersection property by finding a set $B \subseteq[0,1]^{2}$ st. $\left.A \cup \leqslant B\right\}$ has the frise intersection property.
3) Solve \#1 in Mantles Ch 37.
4) We will prove lemma 1. Let x beaset and let u bea collection of subsets of X with the finite intersection property.

Define $\mathcal{E}:=\{B \supseteq A \mid B$ has the finite intersection property $\}$
a) Convince yourself tint $\&$ defines a strict partial order on \mathcal{E} meaning:

1) $B \not \subset B$ never holds.
2) $\beta_{1} \subset \beta_{2}$ and $\beta_{2} \subset \beta_{3} \Rightarrow \beta_{1} \subset \beta_{3}$
b) Let $\mathcal{E}^{\prime} \subseteq \mathcal{E}$ be a simply ordered subset of \mathcal{E}, meaning $\forall \beta_{1}, \beta_{2} \in \mathcal{E}^{\prime}$ either $\beta_{1}=\beta_{2}, \beta_{1} \not \subset \beta_{2}$ or $\beta_{2} \notin \beta_{1}$.
Show that ε^{\prime} has an upperbound in ε, meaning $\exists \beta \in \mathcal{\varepsilon}$ sit. $\nabla B^{\prime} \in \mathcal{E}^{\prime}$, either $\beta^{\prime}=\beta$ or $\beta^{\prime} \notin \beta$.
c) Recall Zorn's lemma:

Let E be strictly partially oreved set. If every simply ordered set of \mathcal{E} has an upper bound in \mathcal{E}, then \mathcal{E} hasa maximal element, which is an element $\beta \in E$ st. There doesn'texist $\beta^{\prime} \in \mathcal{E}$ satisfying $\quad \beta<\beta^{\prime}$.
Conclude the proof of lemma 1 by invoking Zorn's Lemma on (ε, \subset).

