0

IVT: Let X be connected and let $f: X \rightarrow R$ be continuous. Let a, b \in X, and r \in R s.t. $f(a) \leq r \leq f(b)$, Then $\exists c \in X s.t.$ f(c) = r.

Proof: Share X is connected,
$$f(X)$$
 is a connected subspace of \mathbb{R} .
By lemma, since $f(a) \leq f(b)$, $[f(a), f(b)] \leq f(X)$.
In fadricular, $\exists c \in X$ s.t. $f(c) = Y$.

Proof:

$$A = b$$
 Let A and B form a separation AY .
 $A = \begin{array}{c} closure}{} AA = \overline{A} \cap Y \\ \hline \\ since Aiscloved \\ iny \\ and so \\ formalised \\ Similarly \\ A \cap B = \phi$.
 $(b = >a)$
Prove this $Hint : led U = \widehat{A} \cap Y \\ \hline \\ S = \widehat{A} \cap Y \\ formal \\ Y = \widehat{B} \cap Y \\ J \end{array}$

L'écrollang: Let
$$\mathcal{Y} \subset \mathcal{X}$$
 be a connected subspace of \mathcal{X} .
Then \mathcal{Y} is connected. Furthermore, any $\mathcal{Y} \subseteq \mathcal{X}$
satisfying $\mathcal{Y} \subseteq \mathcal{Y}' \subseteq \mathcal{Y}$ is connected.
Moof (Use above thm)

 F_{iX} (X0,Y0) $\in X_X Y$.

$$\begin{bmatrix} X \times \{\omega\} \\ runned \end{bmatrix}$$

$$\begin{bmatrix} Y \times \{\omega\} \\ T (xonse) \end{bmatrix} = X \times \{\omega\} U \{xo\} U Y \\ xo\} U Y \\ xo) U Y \\ xo)$$

Pathwise connectedness

Def: A Path in a topological space X from X to y is a continuous function $f: \Sigma_{01}T \longrightarrow X$ satisfying $f(\omega) = X$ and f(T) = Y.

Def: X is pathuse connected if , every Pair XIYEX, Brath from X to y.

Theorem: Pathwise connected => Connected. Proof: Suppose U and V forma separation of X. Let XEU and YEV. Then Flath F: Coils => X from X to Y.

This implies that f'(U) and f'(U) former separation of [orf] controducting U V the connectedness of [orf]. Post-lecture - Practice - Questions

6) Consider The space (R^M, Tbox). Let A CR^M The set of all bounded sequences and BCR^M be the set of all unbounded sequences. Show that Aard B farma separation of (RM, Tbox), and hence it's not connected.

8) a) Show that Continuous functions map pathwike connected sets to pathwike Connected sets.

b) Show That
$$S^n$$
 is Pathwise Connected.
Hint: define $g: \mathbb{R}^n \setminus \{0\} \to S^n \to \mathbb{S}^g(x) = \frac{x}{n \times n}$

9) Define
$$S = \frac{1}{2} \left(x, \sin \frac{1}{x} \right) \left(x > 0 \right)^{2}$$
,
a) find \overline{S} .

b) Show that S is connected and then fore S is Connected. (S is rolled the topologist's Sine curve and is an example of a connected stace that is not pathwise connected).

