* Laithy 1) logistics / info about course 2) Informal Introduction 3) Begin the Course contect. * Course Website * Syllabur * Prerequisites. "Mathematical Maturity" * Book/ Course Context. "Topology" by Munkre. * lecture style * Tutorials. Arthur Qui and Siawei Chen * Helpl Instructor: 2 weekly Africe hours (Friday 1-3) TAS : Zweekly office hours Piazza :

* Assignments & Acodemic Integrity Rectares, tutorias, book, Assignments will teach you topology

Informal Introduction

But Matif X=R? On R, me have ; "distance between x andy" = d(xry) = 1x-y] called a metric. A set equipped with a metric genamples 1 is called a metric space. 3 topological spaces

To have the above notions , we need to equip X with a structure that gives it a sense of "place", "local its" or "position" This is called a topology on X (that type of structure is called a topological structure).

Definition of Topology

Topology of R?: (Rn contains more structure that we need)

The metric on Rⁿ: $d(x_{1'3}) := ||x-3|| = \int_{\xi=1}^{\infty} (x_i - y_i)^2$ gives us and im of closenes & continuity. Recall the def of continuous: A map f: Rⁿ \rightarrow Rⁿ is cont if $\forall x \in R^n$, $\forall e>0$, $\exists s>0$ st. $d(f(x), f(y)) < \varepsilon$ whenever $d(x_{1'3}) < \delta$. Rⁿ $f(y) \in B_{\varepsilon}(f(x))$ f $y \in B_{\varepsilon}(x)$ R^n $f(y) \in B_{\varepsilon}(f(x))$ f $(x) = \int_{T}^{T} R^n$ $f(y) = \int_{T}^{T} R^n$ is a homeomorphism if fisinvertible and continuous with continuous inverse.

A homeomorphism perserves the topological structure. Topology is the study of all the properties perserved by homeomorphisms or cont. deform ations. Those properties are called topological properties (topological invariants). Question: Is boundedness on \mathbb{R}^n a topological property? No. Since f(x) = tanx is a homeomorphism from $(-\overline{T}_2, \overline{T}_{2})$ to \mathbb{R} .

Boundedings comes from the metric, which would not necessarily exist on an arbitrary to Pological space.

Recall: Theoren ball
$$B_r(x)$$
 centered at x with radius r
is defined as the set $\{24 \in \mathbb{R}^n\} d(x_1x) < r\}$
let's define another more general them open balls:
Def: USPⁿ roopen if $4x \in U$, $3r > 0$ set: $B_r(x) \leq U$
Exc: Show this is equivalent to saving that U is a union of
open balls.
Use Can formulate the notion of closeness and continuity using
also open sets.

This institutes the idea of defining a topological structure by Choosing what the open sets of X are.

Is any collection $T \subseteq P(X)$ can be chosen to be the open sets? No! It will not necessarily give a sensible notion of "closeness". (Since intuitively we want union/, fineighbourhoods" of x to be also "nersee bourhoods" of x).

After some thought, we come upwith the definition:

Def: A topology on X is a callection T CP(X) Saturfying: 1) Ø, XET 2) An arbitrary union of sets in T is in T. 3) A finite intersection of sets in T is in T. C sets in T will be called open sets) The Pair (X, T) is called a topological space.

Why do we restrict (3) to finite intersection?

Exi Discrete Topology on X is
$$T = P(X)$$

(Check Tisindeed a topology)
* Every subset is open. In particular $\{X,Y\}$ are open.
* Every function to cont !!
* Sequences only converge if they're eventually
constant
X Is Thistopology a metaric Space?
Yes! $d(X,y) = \{O, if X = y\}$ show that
induced by that
metric is induced
The discrede topying.

Et: Indiscrete Topology on X is T= {QIX}