Slide ?:

$$
\sum_{n=1}^{\infty} a_{n}=\sum P \cdot T \cdot+\sum N \cdot T .
$$

Note $\nsucc a_{n}=\max \left\{a_{n}, 0\right\}+\min \left\{a_{n}, 0\right\}$ if $a_{n}>0, \quad \begin{array}{lll}a_{n} & \downarrow & \downarrow \\ a_{n}\end{array}$
$F F a_{n}<0$,
So $\left.S_{n}=\sum_{n=1}^{\sum_{n=1}^{K} \max \left\{a_{n}, 0\right\}}+\sum_{\sum_{n=1}^{\infty} \max \left\{a_{n}, 0\right\},}^{\sum_{n=1}^{\infty} \min \left\{a_{n}, 0\right\}} a_{n}, 0\right\}$ converge.

$$
\text { So: } \begin{aligned}
\sum_{n=1}^{\infty} a_{n} & =\sum_{n=1}^{\infty} \max \left\{a_{n, 0}\right\}+\min \left\{a_{n}, 0\right\} \\
\infty & =\sum_{n=1}^{\infty} \max \left\{a_{n}, 0\right\}
\end{aligned}
$$

What I used in \rightarrow : if Kan conv and Ebon con
used by /Then Canton cons
(1) $\left\{\& \sum a_{n}+b_{n}=\sum a_{n}+\sum b_{n}\right.$ (limit sum Rule).
wealso know: If Eanconr, Eben div * Then $\sum a_{n}+b_{n}$ div
(Also limit sum rule)
used by (2) and (3)
(2)

Since $a_{n}=\max \left\{a_{n}, 0\right\}+\min \left\{a_{n}, 0\right\}$
and $\sum \max \left\{a_{n}, 0\right\}=\infty$
$\sum \min \left\{a_{n c 0}\right\}$ converge
Then by \because 为, a_{n} div.
now for (4) :
we don't know.
$E \times 1$:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} & \sum N T=\infty \\
\text { tut } & \sum_{n=1}^{\infty} \frac{\left(v 1^{n}\right.}{n} \operatorname{con} v .
\end{aligned}
$$

Ex:

$$
\begin{aligned}
\sum_{n=1}^{\infty}(-1)^{n} n & \sum P T
\end{aligned}=\sigma=r=-\infty
$$

but $\sum(-1)^{n} n$ div
since $\lim _{n \rightarrow \infty}(-1)^{n} n \neq 0$
To fiacre ant howit diverges,
compute S_{u}.

Slide 5

1) Conreges:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a n}\right| & =\lim _{n \rightarrow \infty} \frac{3^{n+1}}{(n+1)!} \frac{n!}{3^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{3}{n+1}=0
\end{aligned}
$$

So $\sum_{n=1}^{\infty} \frac{3^{n}}{n!}$ converses.
2)

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty} \frac{(2 n+2)!}{(n+1)!^{2} 3^{n+2}} \cdot \frac{3^{n+1} n!}{(2 n)!} \\
& =\lim _{n \rightarrow \infty} \frac{(2 n+2)(2 n+1)}{(n+1)^{2} 3}=\frac{4}{3}>1
\end{aligned}
$$

so S... diveges.
C
general version of Ratio Test:

$$
\binom{\operatorname{limsul}_{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \sup _{n>a} a_{n}}{\text { instead of limit }}
$$

3) $\lim _{n \rightarrow \sqrt{g}} \frac{\left.1 / n_{x}\right)}{1 / n}=1$ so Patio test is inconclusive.

By integral test, $\sum \frac{1}{n} \operatorname{div}$.
4)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n!} \\
& =\lim _{n \rightarrow \infty} \frac{(n+1) \cdot n^{n}}{(n+1)^{n} \cdot(n+1)}=\lim _{n \rightarrow \infty} \frac{n+1}{n \neq c} \cdot\left(\frac{n}{n+1}\right)^{n} \\
& =\lim _{n \rightarrow \infty}(1+c / n)^{-n} \\
& =[\underbrace{\lim _{n \rightarrow \infty}\left((t / / n)^{n \rightarrow \infty}\right.}_{0}]^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \lim _{n \rightarrow \infty}\left(\left(t y_{n}\right)^{n}\right.=\lim _{n \rightarrow \infty} e^{n \ln \left(1+y_{n}\right)} \\
&=\exp \left[\lim _{n \rightarrow \infty} n \ln \left(1+y_{n}\right)\right] \\
&=\exp \left[\lim _{x \rightarrow \infty} \frac{\ln \left(1+y_{x}\right)}{y / x}\right] \\
& c^{\prime} y^{\prime} \\
&=\exp \left[\lim _{x \rightarrow \infty} \frac{x}{x+1} \frac{-x^{2}}{-y^{2}}\right] \\
&=\exp \left[\lim _{x \rightarrow \infty} \frac{x^{2}}{x+2}\right]=e
\end{aligned}
$$

So

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n t}}{a_{n}}\right|=\frac{1}{e}<q
$$

So $\sum \frac{n!}{n^{n}}$ Convergent.
5) $\lim _{n \rightarrow \infty} \frac{\ln n}{\ln (n+1)}=1$

So Ratiotest is inconclesire aresto clover

So by varation f the LCT, if $\sum \frac{1}{n} d i v$ then $\sum \frac{1}{\ln r}$ direses (If $\sum 1 / \ln n$ conv then $\sum \frac{1}{n}$ conv; useless)
since $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$, we krow fornbig

$$
\begin{aligned}
& 0^{<\ln n<n} \\
& \text { So } \frac{1}{\ln n}>\frac{1}{n}>0
\end{aligned}
$$

6) $\lim _{n \rightarrow \infty} \frac{n \ln (n)^{2}}{(n+1)(\ln (n+1))^{2}}=\lim _{n \rightarrow \infty} \frac{n}{n+1} \cdot\left(\lim _{n \rightarrow \infty} \frac{\ln n}{\ln n+1}\right)^{2}$

$$
=1
$$

Ratio test is inconclusive.
Truing with LCT:

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{n(\ln n)^{2}}}{Y / n^{(.1}}=\lim \frac{n^{0 .-1}}{(\ln n)^{2}}=\infty
$$

If $\sum \frac{1}{n^{\prime \prime \prime}}$ dir, then $\sum \frac{1}{n\left(l_{n n}\right)^{2}} d i r$
(useless)

Trying with integral test:
Since $\frac{1}{n(\ln n)^{2}}$ is Positive \& \downarrow So wean apply integral test So Theseries $\sum \frac{1}{\operatorname{nen} n^{2}}$ behaves like

$$
\int \frac{1}{x \ln x^{2}} d x
$$

$$
\text { so } \int_{-1}^{\infty} \frac{d x}{x(\ln x)^{2}}=\left.\frac{-1}{\ln x}\right|_{2} ^{\infty}=\frac{1}{\ln 2}<\infty
$$

so cone
so $\sum \frac{1}{n \ln n^{2}}$ also con.
Slide $6:$
Let $\varepsilon>0$, since $\lim _{n \rightarrow \pi}\left|\frac{a_{n+1}}{a_{n}}\right|=h$
Then $\exists N \in \mathbb{N}$ see. $\forall n>N$,

$$
\left[\begin{array}{c}
L-\varepsilon<\left|\frac{a_{n+1}}{a_{n}}\right|<L+\varepsilon \\
{\left[\begin{array}{ll}
\left|a_{n}\right|(L-\varepsilon)<\left|a_{n+1}\right|<\left|a_{n}\right|(L+\varepsilon)
\end{array}\right]^{\langle<| a_{n+1} \mid(L+\varepsilon)} \lll\left|a_{n-1}\right|(L+\varepsilon)(L+\varepsilon)}
\end{array}\right.
$$

$$
\begin{aligned}
&<\left|a_{n-2}\right|(L+\varepsilon)^{n-N+1} \\
&<\left|a_{N}\right|(L+\varepsilon)^{n-N} \\
& \Rightarrow \quad\left|a_{n+1}\right|<\left|a_{N}\right|(L+\varepsilon)^{n-N+1} \\
& \text { or } \quad\left|a_{n}\right|<\left|a_{N}\right|(L+\varepsilon)^{n-N} \\
& n_{0} \mid d s \quad \forall n>N
\end{aligned}
$$

Similaly apply $\left|a_{n}\right|(L-\varepsilon)<\left|a_{r a t}\right|$ several timg taget $\left|a_{A d}\right|(l-\varepsilon)^{n-N}<\left|a_{n}\right|$

So $\forall n>N$,

$$
\begin{aligned}
& \left(\begin{array}{r}
\left.r^{n} \text { and } 3 r^{n} \text { are } \begin{array}{r}
\text { oth } \\
\text { gesverric }
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

Prablem 2:
sulfose $L<1$.
Choose $\varepsilon=\frac{1-L}{2}$ so $L_{t \varepsilon}<1$.
$\exists N \in N$ s-t $\quad \forall n>N$,

$$
\alpha<\left[\left|a_{n}\right|<\left(L_{t} \varepsilon\right)^{n-N}\left|a_{N}\right|\right]
$$

Aorly BCT: Since $L+\varepsilon<1$,

$$
\sum_{n=N+1}^{\infty}(L+\varepsilon)^{n-N} \underbrace{\left|a_{N}\right|}_{\text {Constat }} \text { converges }
$$

weget $\sum_{n=N_{t 1}}^{Q}\left|a_{n}\right|$ dso conreses
Then $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converses

Similaly if L I,
Choose $\varepsilon=\frac{L-1}{2}$ so that $L-\varepsilon>1$
we know $\exists N \in N$ s.t. $\quad \operatorname{tr} s N$,
$O<(L-\varepsilon)^{n-N}\left|a_{N}\right|<\left|a_{n}\right|$
Arply BCT: since $L-\varepsilon>0, \sum_{n=N+1}^{\infty}<(L-\varepsilon)^{n-N} / a n /$ divess $(L-\varepsilon)^{-N}\left|a_{N}\right| \underbrace{\sum_{n=N+1}^{\infty}(2-\varepsilon)^{n}}_{\sum \infty}$
so $\sum_{n=N+1}^{\infty}\left|a_{n}\right|$ diverge,
$\Rightarrow \sum_{n=1}^{\infty}\left|a_{n}\right|$ dineges.

Slide 7

1) Converges $\forall x \in \mathbb{R}$.

Apply Ratio test: $\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)!} \frac{n!}{x^{n}}\right|$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{1}{n+1}|x|=|x| \lim _{n \rightarrow \infty} \frac{1}{n+1} \\
& =0 \\
& \forall x \in \mathbb{R} .
\end{aligned}
$$

So $\forall x \in \mathbb{R}, \overline{\sum_{n=0}^{\infty} \frac{x^{n}}{n!}}$ converse

$$
m=e^{x}
$$

2) Apply ratio test.
we wont to find all x sit. $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}(x-5)^{n+1}}{a_{n}(x-5)^{n}}\right|<9$

$$
=\left|(x-5) n^{2} 4^{n}-8\right|
$$

$$
\left.\begin{aligned}
& \lim _{n \rightarrow \infty} \left\lvert\, \frac{1}{(n+1)^{2}} \& 4^{n+1}\right.
\end{aligned} \right\rvert\,
$$

1) $\forall x$ s.v. $|x-5| \frac{1}{4}<1, \quad \sum a_{n} x^{n}$ convegse

$$
\begin{aligned}
& \Leftrightarrow \quad|x-5|<4 \\
& \Leftrightarrow \quad x \in(1,9)
\end{aligned}
$$

2) $\forall x$ s.e. $|x-5| \frac{1}{4}>1, \quad \sum a_{n} x^{n}$ direse,

$$
\Leftrightarrow x \in(9, \infty) \cup(-\infty, 1)
$$

3) Whathaplery at $x=1, x=9\}$ (Ratrotest inconclusie).

$$
\begin{aligned}
\text { at } x=1, & \sum_{n=1}^{\infty} \frac{1}{n^{2}} \frac{(-4)^{n}}{2 \cdot 4 t^{n}} \\
& =\sum_{n=1}^{\infty} \frac{1}{2 n^{2}}(-1)^{n} \quad \text { converge. } \\
\text { at } x=9, & \sum_{n=1}^{\infty} \frac{1}{n^{2}} \frac{4^{n}}{2 \cdot 4^{n}} \\
& =\sum_{n=1}^{\infty} \frac{1}{2 n^{2}} \quad \text { conver }
\end{aligned}
$$

Ansmer is: interral of convergence is $[k, q]$

