## MAT137 - Outroduction

- We are DONE!
- Please don't forget to complete the course evaluation.


## Prove that $e$ is irrational

We will prove that $e$ is an irrational number!
Suppose for the sake of contradiction that $e=\frac{a}{b}$ where $a, b \in \mathbb{N}$.

- As a start, use the $N^{t h}$ Taylor polynomial of $e^{x}$ to approximate $e$ find an expression for the error. Argue that $e$ never equals its approximation for any $N$.
- Estimate the error by a number that only depends on $N$.
- Find the contradiction. Hint: multiply both sides by something so that the left side is just the difference between two integers.


## L'Hopital's Rule Sucks 2

Use Maclaurin series to compute these limits:
(1) $\lim _{x \rightarrow 0} \frac{6 \sin x-6 x+x^{3}}{x^{5}}$
(2) $\lim _{x \rightarrow 0} \frac{\cos (2 x)-e^{-2 x^{2}}}{x^{4}}$
(3) $\lim _{x \rightarrow 0} \frac{(\sin x-x)^{3} x}{(\cos x-1)^{4}\left(e^{x}-1\right)^{2}}$

## Estimation

I want to estimate these two numbers

$$
A=\sin 1, \quad B=\ln 0.9 .
$$

(1) Use Taylor series to write $A$ and $B$ as infinite sums.
(2) If you want to estimate $A$ or $B$ with a partial sum, the fastest way is to use different theorems for $A$ and $B$. What are they?
(3) Estimate $B$ with an error smaller than 0.001 .

## Coincidence?

Prove this:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \quad \sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{2}}{90} \quad \sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{\pi^{2}}{945}
$$

Hint: You know you can factor a polynomial if you are given its zeroes. You also know all the zeroes of $\sin x$. And you ALSO know that $\sin x$ is analytic so you can treat it as a polynomial.

## Coincidence?

Prove this:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \quad \sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{2}}{90} \quad \sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{\pi^{2}}{945}
$$

Hint: You know you can factor a polynomial if you are given its zeroes. You also know all the zeroes of $\sin x$. And you ALSO know that $\sin x$ is analytic so you can treat it as a polynomial.

The Taylor series for $x \cot x$ is

$$
x \cot x=1-2\left[\frac{1}{6} x^{2}+\frac{1}{90} x^{4}+\frac{1}{945} x^{6}+\cdots\right]
$$

Is this a coincidence?!

