
MAT137 - Week 4 Lecture 1

Today’s lecture will assume you have watched videos 2.7 - 2.11
For Tuesday’s lecture, watch videos 2.12 - 2.13.

Ahmed Ellithy MAT137 September 30, 2019 1 / 12



Warm up for your first ε− δ proof.

1 Find one positive value of δ such that

|x − 3| < δ =⇒ |7x − 21| < 1.

2 Find all positive values of δ such that

|x − 3| < δ =⇒ |7x − 21| < 1.

3 Find all positive values of δ such that

|x − 3| < δ =⇒ |7x − 21| < 1
100 .

4 Let ε be an arbitrary positive number. Find all positive values of δ
such that

|x − 3| < δ =⇒ |7x − 21| < ε
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Your first ε− δ proof.

Problem. Prove, directly from the formal definition of the limit, that

lim
x→3

(7x − 15) = 6.

Follow these steps, in order:
1 Write down the formal definition of what you’re trying to prove.

Without the definition, you can’t prove anything.

2 Write down what the structure of the proof should be, without filling
in any details. What variables must you define in what order, what
must you assume and where, etc.

3 Finally, write the complete proof.
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A sample proof.

Proof.

|(7x − 15)− 6| < ε

|7x − 21| < ε

7|x − 3| < ε

|x − 3| < ε

7

So δ = ε

7.

(Nearly everything is wrong with this proof.)

This is an example of what the rough work you do before writing the proof
might look like.
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A more complicated ε− δ proof.

Problem. Prove, directly from the formal definition of the limit, that

lim
x→0

(x3 + x2) = 0.

First:
1 Write down the formal definition of what you’re trying to prove.
2 Write down what the structure of the proof should be, without filling

in any details. What variables must you define in what order, what
must you assume and where, etc.

3 Figure out what δ should be given ε (that will be your rough work).
Then fill in the details and complete the proof.
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A sample proof.

Claim.
∀ε > 0, ∃δ > 0 such that 0 < |x | < δ =⇒ |x3 + x2| < ε.

Proof.
Fix ε > 0. Let δ =

√
ε

|x+1| .

Let x ∈ R, and assume 0 < |x | < δ. Then we have

|x3 + x2| = x2|x + 1| < δ2|x + 1| = ε

|x + 1| |x + 1| = ε.

Therefore |x3 + x2| < ε, as required.

Is the proof correct? If not, what does it do well, and (more importantly)
what does it do wrong?
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Let’s think about choosing δ for this proof.

For all of these questions, let ε and C be fixed positive real numbers.
1 Find one value of δ > 0 such that |x | < δ =⇒ Cx2 < ε.

2 Find all values of δ > 0 such that |x | < δ =⇒ Cx2 < ε.

3 Find one value of δ > 0 such that |x | < δ =⇒ |x + 1| < 7.

4 Find all values of δ > 0 such that |x | < δ =⇒ |x + 1| < 7.

5 Find one value of δ > 0 such that |x | < δ =⇒
{

Cx2 < ε

|x + 1| < 7
.

6 Find one value of δ > 0 such that |x | < δ =⇒ |x3 + x2| < ε.
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Back to the proof.

Problem. Prove, directly from the formal definition of the limit, that

lim
x→0

(x3 + x2) = 0.

Now you have...
...written the formal definition for what you have to prove.
...written down the structure of the proof.
...figured out how to find a δ that works.

So, now, write the complete proof.
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Existence

Write down the formal definition of the following statements:

1 lim
x→a

f (x) = L

2 lim
x→a

f (x) exists

3 lim
x→a

f (x) does not exist

4 lim
x→a

f (x) =∞
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Defining infinite limits

Which of these is a correct definition of lim
x→a

f (x) =∞?
1 ∀M ∈ R, ∃δ > 0 such that 0 < |x − a| < δ =⇒ f (x) > M.

2 ∀M > 0, ∃δ > 0 such that 0 < |x − a| < δ =⇒ f (x) > M.

3 ∀M > 27, ∃δ > 0 such that 0 < |x − a| < δ =⇒ f (x) > M.

4 ∀M ∈ N, ∃δ > 0 such that 0 < |x − a| < δ =⇒ f (x) > M.

5 ∀M ∈ R, ∃δ > 0 such that 0 < |x − a| < δ =⇒ f (x) ≥ M.

Make sure to think about this with pictures.
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Checking your understanding of these conditionals

Let a ∈ R. Let f be a function. Assume we know the following is true
about f :

0 < |x − a| < 1
5 =⇒ f (x) > 70.

Take a minute to draw a picture of what it means for f to satisfy this
conditional. It’s much easier to think about these things when you can
visualize them.

1 Which positive values of δ do you know must satisfy

0 < |x − a| < δ =⇒ f (x) > 70?

2 Which values of M do you know must satisfy

0 < |x − a| < 1
5 =⇒ f (x) > M?
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What is the limit of this function?

Let f , g and h be functions defined on R \ {0}
as:

f (x) = 1
x2

g(x) =
{

0 x = 1
n where n ∈ N and n < 10100

1
x2 otherwise

h(x) =
{

0 x = 1
n where n ∈ N

1
x2 otherwise

Evaluate with proof:
1 lim

x→0
f (x)

2 lim
x→0

g(x)

3 lim
x→0

h(x)
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