• Today's lecture will assume you have watched videos 14.11, 14.12, 4.13 14.14

No videos for tomorrow!

• Please take a few minutes to fill out your course evaluation! They really do matter.

Lagrange's Remainder Theorem

Reminder of the theorem from the video:

Theorem

Let f be C^{n+1} on an interval I containing a point a.

Then for any $x \in I$, we have:

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1},$$

for some number c in between a and x.

This is a consequence of the MVT. Note that the value of c depends on <u>both</u> n and x.

The easiest way to use this theorem is to put an upper bound M on $|f^{(n+1)}(c)|$, so you don't have to care about the particular c.

In this exercise you'll prove that $f(x) = \sin(x)$ is analytic on \mathbb{R} .

1. (A warm up, just to set a goal.) Fix a real number a, and write down the Taylor series for sin(x) centred at a.

2. Fix an $x \in \mathbb{R}$ and a non-negative integer n, and use Lagrange's theorem to write down an expression for the remainder $R_n(x)$. (Remember to quantify your variables.)

3. Find a positive number M such that $|f^{(n+1)}(c)| < M$, no matter what c is.

(Hint: This is easy and you definitely know how to do it already.)

- 4. Prove that $\lim_{n\to\infty} |R_n(x)| = 0.$
- 5. Prove that $\lim_{n\to\infty} R_n(x) = 0$.

We conclude that sin(x) is analytic on all of \mathbb{R} !

Problem: We want to compute the value of

$$A = \int_0^1 x^{17} \sin(x) \ dx.$$

There are two ways you can do this:

- Integrate by parts 17 times to find an antiderivative.
- ② Use power series to find an antiderivative.

Use whichever one you think is faster.

Follow-up problem. Estimate the value of A with an error smaller than 0.001. (At least convince yourself of how to do this.)

•
$$A = \sum_{n=2}^{\infty} \frac{(-2)^n}{(2n+1)!}$$

$$B = \sum_{n=0}^{\infty} (4n+1) x^{4n+2}$$

Hint:
$$\frac{d}{dx} [x^{4n+1}] = ???$$

$$C = \sum_{n=0}^{\infty} \frac{2^n}{(2n)!}$$

 $\mathit{Hint:}$ Write the first few terms. Combine e^x and e^{-x}

Hint: Integrate

3
$$D = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!(n+1)}$$

Problem. Find the **first four non-zero terms** of the Maclaurin series of these functions:

$$f(x) = e^x \sin x$$

$$g(x) = e^{\sin x}$$

Hint: Treat the power series the same way you would treat a polynomial.

L'Hopital's Rule Sucks 1

We just found out that:

$$e^{\sin x} = 1 + x + \frac{x^2}{2} - \frac{x^4}{8} + \cdots$$

Problem 1. What is $g^{(4)}(0)$?

Problem 2. What is
$$\lim_{x\to 0} \frac{e^{\sin x} - 1 - x}{x^2 + x^3}$$
?
Problem 3. What is $\lim_{x\to 0} \frac{e^{\sin x} - 1 - x}{\cos x - 1}$?
Problem 4. What is $\lim_{x\to 0} \frac{x^2(e^{\sin x} - 1 - x)}{(\cos x - 1)^2}$?

Use Maclaurin series to compute these limits:

Im
$$\int_{x \to 0}^{\infty} \frac{6 \sin x - 6x + x^3}{x^5}$$
 Im $\int_{x \to 0}^{\infty} \frac{\cos(2x) - e^{-2x^2}}{x^4}$
 Im $\int_{x \to 0}^{\infty} \frac{(\sin x - x)^3 x}{(\cos x - 1)^4 (e^x - 1)^2}$