MAT137 - Applications

- Today's lecture will assume you have watched videos $14.11,14.12$, 4.1314 .14

No videos for tomorrow!

- Please take a few minutes to fill out your course evaluation! They really do matter.

Lagrange's Remainder Theorem

Reminder of the theorem from the video:

Theorem

Let f be C^{n+1} on an interval I containing a point a.
Then for any $x \in I$, we have:

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

for some number c in between a and x.
This is a consequence of the MVT.
Note that the value of c depends on both n and x.
The easiest way to use this theorem is to put an upper bound M on $\left|f^{(n+1)}(c)\right|$, so you don't have to care about the particular c.

The sine function is analytic

In this exercise you'll prove that $f(x)=\sin (x)$ is analytic on \mathbb{R}.

1. (A warm up, just to set a goal.) Fix a real number a, and write down the Taylor series for $\sin (x)$ centred at a.
2. Fix an $x \in \mathbb{R}$ and a non-negative integer n, and use Lagrange's theorem to write down an expression for the remainder $R_{n}(x)$.
(Remember to quantify your variables.)
3. Find a positive number M such that $\left|f^{(n+1)}(c)\right|<M$, no matter what c is.
(Hint: This is easy and you definitely know how to do it already.)
4. Prove that $\lim _{n \rightarrow \infty}\left|R_{n}(x)\right|=0$.
5. Prove that $\lim _{n \rightarrow \infty} R_{n}(x)=0$.

We conclude that $\sin (x)$ is analytic on all of \mathbb{R} !

Integrals

Problem: We want to compute the value of

$$
A=\int_{0}^{1} x^{17} \sin (x) d x
$$

There are two ways you can do this:
(1) Integrate by parts 17 times to find an antiderivative.
(2) Use power series to find an antiderivative.

Use whichever one you think is faster.

Follow-up problem. Estimate the value of A with an error smaller than 0.001 . (At least convince yourself of how to do this.)

Add these series

(1) $A=\sum_{n=2}^{\infty} \frac{(-2)^{n}}{(2 n+1)!}$
(2) $B=\sum_{n=0}^{\infty}(4 n+1) x^{4 n+2}$
(3) $C=\sum_{n=0}^{\infty} \frac{2^{n}}{(2 n)!}$
(9) $D=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!(n+1)}$

$$
\text { Hint: } \frac{d}{d x}\left[x^{4 n+1}\right]=? ? ?
$$

Hint: Write the first few terms. Combine e^{x} and e^{-x}

Hint: Integrate

Computing Maclaurin Series

Problem. Find the first four non-zero terms of the Maclaurin series of these functions:
(1) $f(x)=e^{x} \sin x$
(2) $g(x)=e^{\sin x}$

Hint: Treat the power series the same way you would treat a polynomial.

L'Hopital's Rule Sucks 1

We just found out that:

$$
e^{\sin x}=1+x+\frac{x^{2}}{2}-\frac{x^{4}}{8}+\cdots
$$

Problem 1. What is $g^{(4)}(0)$?
Problem 2. What is $\lim _{x \rightarrow 0} \frac{e^{\sin x}-1-x}{x^{2}+x^{3}}$?
Problem 3. What is $\lim _{x \rightarrow 0} \frac{e^{\sin x}-1-x}{\cos x-1}$?
Problem 4. What is $\lim _{x \rightarrow 0} \frac{x^{2}\left(e^{\sin x}-1-x\right)}{(\cos x-1)^{2}}$?

L'Hopital's Rule Sucks 2

Use Maclaurin series to compute these limits:
(1) $\lim _{x \rightarrow 0} \frac{6 \sin x-6 x+x^{3}}{x^{5}}$
(2) $\lim _{x \rightarrow 0} \frac{\cos (2 x)-e^{-2 x^{2}}}{x^{4}}$
(3) $\lim _{x \rightarrow 0} \frac{(\sin x-x)^{3} x}{(\cos x-1)^{4}\left(e^{x}-1\right)^{2}}$

