MAT137 - Week 8 Lecture 2

- Today's lecture will assume you have watched videos $3.13,3.15,3.16$, 3.17, 3.18.

For Monday's lecture, watch videos 3.19, 3.20, 4.1, 4.2

Implicit Differentiation

Consider some relation between x and y which defines a curve on the plane.
Recall that if the tangent line at some point $\left(x_{0}, y_{0}\right)$ on the curve is not vertical, then we can locally express y as a function of x.

We have shown this for the circle! Specifically we have shown that for any point on the circle that is not $(\pm 1,0)$,

If $y>0$, then

$$
\text { If } y<0 \text {, then }
$$

$$
y=\sqrt{1-x^{2}}
$$

$$
y=-\sqrt{1-x^{2}}
$$

From there, we found that the slope of the tangent at any point on the circle (except $(\pm 1,0)$) is:

$$
\frac{d y}{d x}=-\frac{x}{y}
$$

whenever the right side makes sense. (so when $y \neq 0$).

Implicit Differentiation

Another method (called implicit differentiation) to find $\frac{d y}{d x}$ is by assuming for the moment that y is a function of x. And just take the derivative of both sides with respect to \times (use the chain rule):

$$
\frac{d}{d x}\left[x^{2}+y^{2}=1\right]
$$

We get

$$
2 x+2 y y^{\prime}=0
$$

which gives us the same thing as before:

$$
y^{\prime}=-\frac{x}{y}
$$

(Implicit differentiation give us a method to find $\frac{d y}{d x}$ without needing to express y as an explicit function of x.)

Implicit differentiation

Consider the relation

$$
\sin (x+y)+x y^{2}=0
$$

cereni It is very difficult to solve for y and express y as a function of x and take the derivative to get the slope of the tangent. So Implicit Differentiation is the only tool that always works.

This relation defines a function $y=h(x)$ near $(0,0)$. Using implicit differentiation, compute

- $h(0)$
- $h^{\prime}(0)$
- $h^{\prime \prime}(0)$
- $h^{\prime \prime \prime}(0)$

Warm up

Compute the derivative of the following functions:
(1) $f(x)=e^{\sin x+\cos x} \ln x$
(2) $f(x)=\pi^{\tan x}$

- $f(x)=\ln \left[e^{x}+\ln \ln \ln x\right]$

Reminder: We know:

$$
\begin{array}{ll}
\frac{d}{d x} e^{x}=e^{x} & \cdot \frac{d}{d x} \ln x=\frac{1}{x} \\
\frac{d}{d x} a^{x}=a^{x} \ln a &
\end{array}
$$

Logarithmic differentiation.

Problem. Compute the derivatives of the following functions:

1. $f(x)=(x+1)^{x}$.
2. $g(x)=x^{\tan (x)}$.
3. Now generalize these ideas into a new differentiation rule:

Let f and g be differentiable functions, and define h by

$$
h(x)=[f(x)]^{g(x)} .
$$

Derive a formula for $h^{\prime}(x)$.

More logarithmic differentiation

Calculate the derivative of

$$
f(x)=(\sin x)^{\cos x}+(\cos x)^{\sin x}
$$

What is wrong with this answer?

$$
\begin{aligned}
\ln f(x)= & (\cos x) \ln (\sin x)+(\sin x)(\ln \cos x) \\
\frac{d}{d x}[\ln f(x)]= & \frac{d}{d x}[(\cos x) \ln (\sin x)]+\frac{d}{d x}[(\sin x)(\ln \cos x)] \\
\frac{f^{\prime}(x)}{f(x)}= & -(\sin x) \ln (\sin x)+(\cos x) \frac{\cos x}{\sin x} \\
& +(\cos x) \ln (\cos x)+(\sin x) \frac{-\sin x}{\cos x}
\end{aligned}
$$

$$
f^{\prime}(x)=f(x)\left[-(\sin x) \ln (\sin x)+(\cos x) \ln (\cos x)+\frac{\cos ^{2} x}{\sin x}-\frac{\sin ^{2} x}{\cos x}\right]
$$

A different type of logarithm

Do this as an exercise
Calculate the derivative of

$$
f(x)=\log _{x+1}\left(x^{2}+1\right)
$$

Hint: If you do not know where to start, remember the definition of logarithm:

$$
\log _{a} b=c \Longleftrightarrow a^{c}=b
$$

Hard derivatives made easy.

With the tools you now know, you can more or less differentiate any function you can right down.

For example, you can compute the derivative of:

$$
h(x)=\sqrt[3]{\frac{\left(\sin ^{6} x\right) \sqrt{x^{7}+6 x+2}}{3^{x}\left(x^{10}+2 x\right)^{10}}}
$$

It will be long, but easy. Taking a log of both sides will turn the right side into a long sum, which is easy to differentiate.

