MAT137 - Week 8 Lecture 1

- Today's lecture will assume you have watched videos 3.10, 3.11, 3.12. For Tuesday's lecture, watch videos 3.13, 3.15, 3.16, 3.17, 3.18

Derivatives of $(f \circ g)$

Assume f and g are functions that have all their derivatives.
Find formulas for

- $(f \circ g)^{\prime}(x)$
© $(f \circ g)^{\prime \prime}(x)$
- $(f \circ g)^{\prime \prime \prime}(x)$
in terms of the values of f, g and their derivatives.

Hint: The first one is simply the chain rule.

Chain Rule + Product Rule \Longrightarrow Quotient Rule

Problem 1. Let $c \in \mathbb{R}$, and let g be a function which is differentiable at c and such that $g(c) \neq 0$.

Let $h(x)=\frac{1}{g(x)}$.
Use the chain rule to derive a formula for $h^{\prime}(c)$.

Problem 2. Use your formula from above to give a simple proof of the quotient rule.

Derivative of cos

In one of the videos, you saw a derivation of the derivative of \sin.

Let $g(x)=\cos x$.
Derive a formula for its derivative directly from the definition of the derivative as a limit.

Hint: Use the " $h \rightarrow 0$ " version of the definition of the derivative, and imitate the derivation in Video 3.11.

Hint: This identity may come in handy:

$$
\cos (a+b)=\cos a \cos b-\sin a \sin b
$$

Trigonometric derivatives

In order to prove:

$$
\begin{equation*}
\frac{d}{d x} \sin x=\cos x \quad \text { and } \quad \frac{d}{d x} \cos x=-\sin x \tag{1}
\end{equation*}
$$

we had to use the following facts:
(1) $\lim _{x \rightarrow 0} \frac{\sin x}{x}$.
(2) $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}$
which we have proven geometrically.

Now using (1), give simple proofs of those facts.

Trigonometric derivatives

Do this as an exercise
You now know that:

$$
\frac{d}{d x} \sin x=\cos x \quad \text { and } \quad \frac{d}{d x} \cos x=-\sin x
$$

Problem. Evaluate the following limits:
(1) $\lim _{h \rightarrow 0} \frac{\cos (7(x+h))-\cos (7 x)}{h}$.
(2) $\lim _{h \rightarrow 0} \frac{\sin (7 x+h)-\sin (7 x)}{h}$

Trigonometric derivatives

Do this as an exercise
Again, you now know that:

$$
\frac{d}{d x} \sin x=\cos x \quad \text { and } \quad \frac{d}{d x} \cos x=-\sin x
$$

From these two results, quickly derive the formulas for the derivatives of...
(1) $\tan (x)$
(2) $\sec (x)$
(3) $\csc (x)$
(3) $\cot (x)$

A pesky function

Let

$$
h(x)= \begin{cases}x^{2} \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}
$$

(1) Calculate $h^{\prime}(x)$ for any $x \neq 0$.
(2) Using the definition of derivative, calculate $h^{\prime}(0)$.
(3) Is h continuous at 0?
(9) Is h differentiable at 0 ?
(3) Is h^{\prime} continuous at 0?

Remark: This is an example of a function f that is differentiable everywhere, but its derivative f^{\prime} is not continuous everywhere. In fact, $\lim _{x \rightarrow 0} f^{\prime}(x)$ does not even exist.
Answer the same questions for the functions $x \sin \frac{1}{x}$ and $x^{3} \sin \frac{1}{x}$

Implicit Differentiation

Function: For each input there is a unique output. $x \longmapsto f(x)$ We can define the graph of the function as the set $\{(x, f(x)): x \in \mathbb{R}\}$. (This will be a curve on the plane).

Relation: A relationship between several variables with no well-defined idea of an input and an output, in particular no "uniqueness" of output. The set $\{(x, y): x$ and y satisfy some relation together $\}$ is also a curve.

Example: Consider the relation $x^{2}+y^{2}=1$. Then the set is $\left\{(x, y): x^{2}+y^{2}=1\right\}$ is the circle centered at 0 with radius 1 . Can you think of a function such that its graph is that curve?

At every point in this curve, is there a well defined tangent line? YES!
However, saying something like $\left.\frac{d}{d x}\right|_{x=a} y$ will not always make sense. Why?

Implicit Differentiation

There is a deep theorem that says any curve with a well defined tangent line at every point can locally be written as the graph of some function.

In particular, if the tangent line at some point $\left(x_{0}, y_{0}\right)$ on the curve is not vertical, then there exists a small enough rectangle centered at (x_{0}, y_{0}) such that y can be uniquely written as a function of x inside that rectangle. This is called the implicit function theorem. Let us believe it for now.

Prove it for the circle! And find $\frac{d y}{d x}$ at the points where the tangent line is not vertical.
So you got that:

$$
\frac{d y}{d x}=-\frac{x}{y}
$$

For any (x, y) on the circle except $(\pm 1,0)$

