MAT137 - Integration of Rational Functions

- Today's lecture will assume you have watched videos 9.15

For Monday's lecture, watch videos 10.1, 10.2

Products of secant and tangent

To integrate

$$
\int \sec ^{n} x \tan ^{m} x d x
$$

- If ???, then try the substitution $u=\tan x$.
- If ???, then try the substitution $u=\sec x$.

Hint: You will need

- $\frac{d}{d x}[\tan x]=\ldots$
- $\frac{d}{d x}[\sec x]=\ldots$
- The trig identity involving sec and tan

Problem: What is the integral when $m=0, n=1$ and $m=0, n=3$.

Rational integrals

(1) Calculate $\int \frac{1}{x+a} d x$
(2) Reduce to common denominator $\frac{2}{x}-\frac{3}{x+3}$
(3) Calculate $\int \frac{-x+6}{x^{2}+3 x} d x$
(9) Calculate $\int \frac{1}{x^{2}+3 x} d x$
(5) Calculate $\int \frac{1}{x^{3}-x} d x$

The integral of secant

Compute

$$
\int \sec x d x
$$

using the substitution $u=\sin x$.

Repeated factors

Do this as an exercise
(1) Calculate $\int \frac{1}{(x+1)^{n}} d x$ for $n>1$
(2) Calculate $\int \frac{x}{(x+1)^{2}} d x$
(3) Calculate $\int \frac{2 x+6}{(x+1)^{2}} d x$
(4) Calculate $\int \frac{x^{2}}{(x+1)^{3}} d x$
© How would you calculate $\int \frac{\text { polynomial }}{(x+1)^{3}} d x$?

