• Today's lecture will assume you have watched videos 9.5, 9.6, 9.10

For Tuesday's lecture, watch videos 9.15

Computation practice: Integration by parts

Use integration by parts (possibly in combination with other methods) to compute:

a
$$\int xe^{-2x} dx$$
b $\int \sin \sqrt{x} dx$
a $\int x^2 \sin x dx$
a $\int x^2 \sin x dx$
a $\int x^2 \arcsin x dx$
a $\int \ln x dx$
a $\int e^{\cos x} \sin^3 x dx$
a $\int e^{\cos x} \sin^3 x dx$
a $\int x \arctan x dx$
b $\int e^{ax} \sin(bx) dx$

We want to compute

$$I = \int e^{ax} \sin(bx) \, dx$$

- Try once integration by parts choosing $u = e^{ax}$. Stop.
- Go back to *I*. Now try integration by parts once choosing $u = \sin(bx)$ instead. Stop.
- Look at what you did. Think.

Persistence

Compute

•
$$\int_{1}^{e} (\ln x)^{4} dx$$
 • $\int_{1}^{e} (\ln x)^{10} dx$

There is a more efficient approach. Call

$$I_n = \int_1^e \left(\ln x\right)^n dx$$

Use integration by parts on I_n . You will get an equation with I_n and I_{n-1} . Now solve the previous questions.

Practice: Integrals with trigonometric functions

Compute the following antiderivatives. (Once you get them to a form from where it is easy to finish, you may stop.)

 $\int \cos^2 x \, dx$

 $\int \sin^4 x \, dx$

 $\int \csc x \, dx$

$$\int \sin^{10} x \cos x \, dx$$

$$\int \sin^{10} x \cos^3 x \, dx$$

$$\int e^{\cos x} \cos x \sin^5 x \, dx$$

Here are some useful trig identities:

$$\sin^{2} x + \cos^{2} x = 1 \qquad \qquad \sin^{2} x = \frac{1 - \cos(2x)}{2}$$
$$\tan^{2} x + 1 = \sec^{2} x \qquad \qquad \cos^{2} x = \frac{1 + \cos(2x)}{2}$$

A reduction formula

Let
$$I_n = \int_0^{2\pi} \sin^n x \, dx$$
.

- **1** Compute I_0 and I_1 .
- Starting with I_n , use integration by parts. Then use the main trig identity to obtain an equation involving I_n and I_{n-2} .
- **③** Use the previous answers to get a formula for I_n for every positive integer n.
- Compute I_8 . (The answer should be $\frac{35}{64}\pi$).

Products of secant and tangent

To integrate

$$\int \sec^n x \tan^m x \, dx$$

Hint: You will need

- $\frac{d}{dx} [\tan x] = \dots$ $\frac{d}{dx} [\sec x] = \dots$
- The trig identity involving sec and tan

Problem: What is the integral when m = 0, n = 1 and m = 0, n = 3.