MAT 137 - Integration by Parts; Trigonometric Functions

- Today's lecture will assume you have watched videos 9.5, 9.6, 9.10

For Tuesday's lecture, watch videos 9.15

Computation practice: Integration by parts

Use integration by parts (possibly in combination with other methods) to compute:
(1) $\int x e^{-2 x} d x$
(5) $\int \sin \sqrt{x} d x$
(2) $\int x^{2} \sin x d x$
(3) $\int \ln x d x$
(9) $\int x \arctan x d x$

Exp-trig antiderivative

We want to compute

$$
I=\int e^{a x} \sin (b x) d x
$$

- Try once integration by parts choosing $u=e^{a x}$. Stop.
- Go back to I. Now try integration by parts once choosing $u=\sin (b x)$ instead. Stop.
- Look at what you did. Think.

Persistence

Compute

$$
\int_{1}^{e}(\ln x)^{4} d x \quad \bullet \int_{1}^{e}(\ln x)^{10} d x
$$

There is a more efficient approach. Call

$$
I_{n}=\int_{1}^{e}(\ln x)^{n} d x
$$

Use integration by parts on I_{n}. You will get an equation with I_{n} and I_{n-1}. Now solve the previous questions.

Practice: Integrals with trigonometric functions

Compute the following antiderivatives. (Once you get them to a form from where it is easy to finish, you may stop.)
(1) $\int \sin ^{10} x \cos x d x$
(9) $\int \cos ^{2} x d x$
(2) $\int \sin ^{10} x \cos ^{3} x d x$
(5) $\int \sin ^{4} x d x$
(3) $\int e^{\cos x} \cos x \sin ^{5} x d x$
(0) $\int \csc x d x$

Here are some useful trig identities:

$$
\begin{aligned}
& \sin ^{2} x+\cos ^{2} x=1 \\
& \tan ^{2} x+1=\sec ^{2} x
\end{aligned}
$$

$$
\begin{aligned}
\sin ^{2} x & =\frac{1-\cos (2 x)}{2} \\
\cos ^{2} x & =\frac{1+\cos (2 x)}{2}
\end{aligned}
$$

A reduction formula

Let $I_{n}=\int_{0}^{2 \pi} \sin ^{n} x d x$.
(1) Compute I_{0} and I_{1}.
(2) Starting with I_{n}, use integration by parts.

Then use the main trig identity to obtain an equation involving I_{n} and I_{n-2}.
(3) Use the previous answers to get a formula for I_{n} for every positive integer n.
(c) Compute I_{8}. (The answer should be $\frac{35}{64} \pi$).

Products of secant and tangent

To integrate

$$
\int \sec ^{n} x \tan ^{m} x d x
$$

- If ???, then try the substitution $u=\tan x$.
- If ???, then try the substitution $u=\sec x$.

Hint: You will need

- $\frac{d}{d x}[\tan x]=\ldots$
- $\frac{d}{d x}[\sec x]=\ldots$
- The trig identity involving sec and tan

Problem: What is the integral when $m=0, n=1$ and $m=0, n=3$.

