MAT137 - Week 11 Lecture 1

- Reminder: Reminder: Test 2 is on Friday 29 November. Please read the vocabulary list posted on the course website before the test.
- Problem Set B is on the website now. It contains material that is not covered by Problem Sets 1 through 4, but that is covered by Test 2. It is not to be submitted, but it is very good practise. Do these problems before Test 2.
- Today's lecture will assume you have watched videos 5.7, 5.8, 5.9, 5.10, 5.11, 5.12

For Tuesday's lecture, watch videos 6.1, 6.2

Using the MVT

Problem 1: Let f be a function that is continuous on $[0,7]$ and differentiable on $(0,7)$.
Suppose that $f(0)=-5$, and that $f^{\prime}(x) \leq 10$ for all $x \in(0,7)$.
What can you say about the value of $f(7)$?

Using the MVT

Problem 2: Let $a, b \in \mathbb{R}$. Use the Mean Value Theorem to show

$$
|\cos a-\cos b| \leq|a-b|
$$

Problem 3: We can generalize problem 2. Prove this theorem:

Theorem

Let f be differentiable on \mathbb{R} and suppose f^{\prime} is bounded. Then there exists $M>0$ such that:

$$
\forall x, y \in \mathbb{R}, \quad|f(x)-f(y)| \leq M|x-y|
$$

Positive derivative implies increasing

We want to prove that if a function has positive derivative on an interval, then it's increasing on that interval. We begin with a warm up:

Let f be a function defined on an interval I.

Problem 1: Write the definition of " f is increasing on l ".

Problem 2: Write down the statement of the Mean Value Theorem.
(Don't omit the hypotheses).

Positive derivative implies increasing

Use the MVT to prove

Theorem

Let $a<b$. Let f be a differentiable function on (a, b).

- IF $\forall x \in(a, b), f^{\prime}(x)>0$,
- THEN f is increasing on (a, b).
(1) From the statement, figure out the structure of the proof.
(2) If you have used a theorem, did you verify the hypotheses?
- Are there words in your proof, or just equations?

What is wrong with this proof?

Theorem

Let $a<b$. Let f be a differentiable function on (a, b).

- IF $\forall x \in(a, b), f^{\prime}(x)>0$,
- THEN f is increasing on (a, b).

Proof.

- From the MVT,

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

- We know $b-a>0$ and $f^{\prime}(c)>0$
- Therefore $f(b)-f(a)>0$, so $f(b)>f(a)$
- f is increasing.

Proving inequalities

Prove that, for every $x \in \mathbb{R}$

$$
e^{x} \geq 1+x
$$

Hint: When is the function $f(x)=e^{x}-1-x$ increasing or decreasing?

is this theorem true?

Theorem

Let $a<b$ and let f be a function defined on $[a, b]$. IF

- f is differentiable on (a, b)
- $\forall x \in(a, b), f^{\prime}(x)=0$,

Then f is constant on $[a, b]$
If you think it's true, then prove it.
If you think it's false, come up with a counter example.

Proving difficult identities

Prove that there exists a $C \in \mathbb{R}$ such that for every $x \geq 0$,

$$
\arcsin \frac{1-x}{1+x}+2 \arctan \sqrt{x}=C
$$

Hint: Let $g(x)=\arcsin \frac{1-x}{1+x}+2 \arctan \sqrt{x}$. I am asking you to prove that g is constant on $[0, \infty)$

What's wrong with this "proof"?

Proof.

- g is differentiable on $(0, \infty)$.
- Then for any $x \in(0, \infty)$

$$
g^{\prime}(x)=\frac{d}{d x}\left[\arcsin \left(\frac{1-x}{1+x}\right)+2 \arctan (\sqrt{x})\right]=\ldots
$$

- ...(derivative computations)...
- $g^{\prime}(x)=0$ on $(0, \infty)$.
- Therefore, by the MVT, g is constant on $(0, \infty)$.
- We evaluate it at $x=0$ to find the constant value.
- $g(0)=\ldots$ (computations) $\ldots=\frac{\pi}{2}$
- Therefore, $g(x)=\frac{\pi}{2}$ for all $x \geq 0$.

Challenging Question

Is this theorem true or false?
Theorem
Let f be differentiable on \mathbb{R}. Then f^{\prime} cannot have jump or removable discontinuities.

If you think it's true, prove it.
If you think it's false, find a counter example.

Challenging Question

Theorem

Let f be differentiable on \mathbb{R}. Then f^{\prime} cannot have jump or removable discontinuities.

Let's first prove this lemma.

Lemma

Let f be differentiable on \mathbb{R}.
IF

- $\lim _{x \rightarrow a^{+}} f^{\prime}(a)$ exists,
- $\lim _{x \rightarrow a^{-}} f^{\prime}(a)$ exists,

THEN $\lim _{x \rightarrow a} f^{\prime}(x)=f^{\prime}(a)$

