- **Reminder:** Reminder: Test 2 is on Friday 29 November. Please read the vocabulary list posted on the course website before the test.
- Problem Set B is on the website now. It contains material that is not covered by Problem Sets 1 through 4, but that is covered by Test 2. It is not to be submitted, but it is very good practise. Do these problems before Test 2.
- Today's lecture will assume you have watched videos 5.7, 5.8, 5.9, 5.10, 5.11, 5.12

For Tuesday's lecture, watch videos 6.1, 6.2

Problem 1: Let f be a function that is continuous on [0,7] and differentiable on (0,7). Suppose that f(0) = -5, and that $f'(x) \le 10$ for all $x \in (0,7)$.

What can you say about the value of f(7)?

Problem 2: Let $a, b \in \mathbb{R}$. Use the Mean Value Theorem to show

$$|\cos a - \cos b| \le |a - b|$$

Problem 3: We can generalize problem 2. Prove this theorem:

Theorem

Let f be differentiable on \mathbb{R} and suppose f' is bounded. Then there exists M > 0 such that:

$$\forall x, y \in \mathbb{R}, \ |f(x) - f(y)| \le M|x - y|$$

We want to prove that if a function has positive derivative on an interval, then it's increasing on that interval. We begin with a warm up:

Let f be a function defined on an interval I.

Problem 1: Write the definition of "*f* is increasing on *I*".

Problem 2: Write down the statement of the Mean Value Theorem. (Don't omit the hypotheses).

Use the MVT to prove

Theorem

- Let a < b. Let f be a differentiable function on (a, b).
 - IF $\forall x \in (a, b), f'(x) > 0$,
 - THEN f is increasing on (a, b).

- From the statement, figure out the structure of the proof.
- If you have used a theorem, did you verify the hypotheses?
- S Are there words in your proof, or just equations?

What is wrong with this proof?

Theorem

Let a < b. Let f be a differentiable function on (a, b).

• IF
$$\forall x \in (a, b), f'(x) > 0$$
,

• THEN *f* is increasing on (*a*, *b*).

Proof.

$$f'(c) = rac{f(b) - f(a)}{b - a}$$

- We know b a > 0 and f'(c) > 0
- Therefore f(b) f(a) > 0, so f(b) > f(a)
- f is increasing.

Prove that, for every $x \in \mathbb{R}$

$e^x \ge 1 + x$

Hint: When is the function $f(x) = e^x - 1 - x$ increasing or decreasing?

Theorem

Let a < b and let f be a function defined on [a, b]. IF

- f is differentiable on (a, b)
- $\forall x \in (a, b), f'(x) = 0,$

Then f is constant on [a, b]

If you think it's true, then prove it. If you think it's false, come up with a counter example. Prove that there exists a $C \in \mathbb{R}$ such that for every $x \ge 0$,

$$\arcsin \frac{1-x}{1+x} + 2 \arctan \sqrt{x} = C$$

Hint: Let $g(x) = \arcsin \frac{1-x}{1+x} + 2 \arctan \sqrt{x}$. I am asking you to prove that g is constant on $[0, \infty)$

What's wrong with this "proof"?

Proof.

- g is differentiable on $(0,\infty)$.
- Then for any $x \in (0,\infty)$

$$g'(x) = \frac{d}{dx} \left[\arcsin\left(\frac{1-x}{1+x}\right) + 2 \arctan\left(\sqrt{x}\right) \right] = \dots$$

- ...(derivative computations)...
- g'(x) = 0 on $(0, \infty)$.
- Therefore, by the MVT, g is constant on $(0,\infty)$.
- We evaluate it at x = 0 to find the constant value.
- $g(0) = ...(computations)... = \frac{\pi}{2}$

• Therefore,
$$g(x) = \frac{\pi}{2}$$
 for all $x \ge 0$.

Is this theorem true or false?

Theorem

Let f be differentiable on \mathbb{R} . Then f' cannot have jump or removable discontinuities.

If you think it's true, prove it. If you think it's false, find a counter example.

Theorem

Let f be differentiable on \mathbb{R} . Then f' cannot have jump or removable discontinuities.

Let's first prove this lemma.

```
Lemma

Let f be differentiable on \mathbb{R}.

IF

• \lim_{x \to a^+} f'(a) exists,

• \lim_{x \to a^-} f'(a) exists,

THEN \lim_{x \to a} f'(x) = f'(a)
```