MAT137 - BCT and LCT

• Today's lecture will assume you have watched videos 12.9,12.10

For Monday's lecture, watch videos 13.2, 13.3, 13.4, 13.5, 13.6, 13.7

Warm up: convergent or ∞ ?

$$\int_{1}^{\infty} \frac{1}{x^2} dx$$

$$\int_{1}^{\infty} \frac{1}{x} dx$$

4.
$$\int_0^1 \frac{1}{x^2} dx$$

$$5. \int_0^1 \frac{1}{\sqrt{x}} dx$$

6.
$$\int_{0}^{1} \frac{1}{x} dx$$

7.
$$\int_{1}^{\infty} \frac{3}{x^2} dx$$

True or False?

Let $a \in \mathbb{R}$, and let f and g be continuous functions defined on $[a, \infty)$.

Assume that $\forall x \geq a, \quad 0 \leq f(x) \leq g(x)$.

What can we conclude?

- IF $\int_{a}^{\infty} f(x) dx$ is convergent, THEN $\int_{a}^{\infty} g(x) dx$ is convergent.
- ② IF $\int_a^\infty f(x) dx = \infty$, THEN $\int_a^\infty g(x) dx = \infty$.
- **3** IF $\int_a^\infty g(x) dx$ is convergent, THEN $\int_a^\infty f(x) dx$ is convergent.
- IF $\int_a^\infty g(x) dx = \infty$, THEN $\int_a^\infty f(x) dx = \infty$.

Ahmed Ellithy MAT137 February 25, 2020

True or False? – Part 2

Let $a \in \mathbb{R}$, and let f and g be continuous functions defined on $[a, \infty)$.

Assume that $\forall x \geq a, \quad f(x) \leq g(x)$.

What can we conclude?

- IF $\int_{a}^{\infty} f(x)dx$ is convergent, THEN $\int_{a}^{\infty} g(x)dx$ is convergent.
- ② IF $\int_a^\infty f(x)dx = \infty$, THEN $\int_a^\infty g(x)dx = \infty$.
- § IF $\int_a^\infty g(x)dx$ is convergent, THEN $\int_a^\infty f(x)dx$ is convergent.
- IF $\int_{a}^{\infty} g(x)dx = \infty$, THEN $\int_{a}^{\infty} f(x)dx = \infty$.

Ahmed Ellithy MAT137 February 25, 2020

True or False? – Part 3

Let $a \in \mathbb{R}$, and let f and g be continuous functions defined on $[a, \infty)$.

Assume that $\exists M \geq a$ such that $\forall x \geq M$, $0 \leq f(x) \leq g(x)$.

What can we conclude?

- IF $\int_{a}^{\infty} f(x)dx$ is convergent, THEN $\int_{a}^{\infty} g(x)dx$ is convergent.
- ② IF $\int_a^\infty f(x)dx = \infty$, THEN $\int_a^\infty g(x)dx = \infty$.
- § IF $\int_a^\infty g(x)dx$ is convergent, THEN $\int_a^\infty f(x)dx$ is convergent.
- IF $\int_{a}^{\infty} g(x)dx = \infty$, THEN $\int_{a}^{\infty} f(x)dx = \infty$.

Ahmed Ellithy MAT137 February 25, 2020

A simple BCT application

We want to determine whether $\int_1^\infty \frac{1}{x + e^x} dx$ is convergent or divergent.

We can try at least two comparisons:

- **1** Compare $\frac{1}{x}$ and $\frac{1}{x+e^x}$.
- 2 Compare $\frac{1}{e^x}$ and $\frac{1}{x+e^x}$.

Try both. What can you conclude from each one of them?

What about $\int_0^1 \frac{1}{x + e^x} dx$?

BCT calculations

Use the BCT to determine whether each of the following is convergent or divergent

$$\int_1^\infty \frac{1+\cos^2 x}{x^{4/3}} \, dx$$

$$\int_0^\infty \frac{\arctan x^2}{1+e^x} \, dx$$

$$\int_2^\infty \frac{(\ln x)^{10}}{x^2} \, dx$$