MAT137 - Week 3 Lecture 2

- Reminder: Problem Set 1 is available on the course website, and is due Thursday, September 26 by 11:59pm.
- Today's lecture will assume you have watched videos 2.5-2.6 For Monday's lecture, watch videos 2.7-2.11.

The formal definition of a limit

Write down the formal definition of the statement

$$
\lim _{x \rightarrow a} f(x)=L
$$

The formal definition in English

For every interval centred at L, there exists an interval centred at a that is sufficiently small such that f maps this interval inside the interval centred at L.

Understanding the role of δ in the definition

- Find one positive value of δ s.t.: $0<|x-2|<\delta \Longrightarrow|f(x)-2|<\frac{1}{2}$
- Find all positive values of δ s.t.: $0<|x-2|<\delta \Longrightarrow|f(x)-2|<\frac{1}{2}$

Defining side limits

Earlier you wrote down the following definition.

Definition

Let $a, L \in \mathbb{R}$. Let f be a function defined at least on an interval centred at a, except possibly at a.

Then

$$
\lim _{x \rightarrow a} f(x)=L
$$

means

$$
\forall \varepsilon>0 \exists \delta>0 \text { such that } 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Now, write formal definitions of:

$$
\lim _{x \rightarrow a^{-}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a^{+}} f(x)=L
$$

Defining infinite limits

In video 2.6, you saw the definition of $\lim _{x \rightarrow \infty} f(x)=L$. Let's do a somewhat similar new thing now.

Let $a \in \mathbb{R}$. Let f be a function defined at least on an interval centred at a, except possibly at a.

Write a formal definition for

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

