• Today's lecture will assume you have watched videos 12.1, 12.4, 12.7, 12.8

For Tuesday's lecture, watch videos 12.9, 12.10

Refining the Big Theorem

• Construct a sequence $\{x_n\}_{n=0}^{\infty}$ such that

 $n^a \ll x_n \ll n^b$ for all a < 2 and $b \ge 2$

2 Construct a sequence $\{y_n\}_{n=0}^{\infty}$ such that

 $n^a \ll y_n \ll n^b$ for all $a \le 2$ and b > 2

Refining the Big Theorem

• Construct a sequence $\{x_n\}_{n=0}^{\infty}$ such that

 $n^a \ll x_n \ll n^b$ for all a < 2 and $b \ge 2$

2 Construct a sequence $\{y_n\}_{n=0}^{\infty}$ such that

 $n^a \ll y_n \ll n^b$ for all $a \le 2$ and b > 2

Solution Construct a sequence $\{z_n\}_{n=0}^{\infty}$ such that

 $n^a \ll z_n \ll c^n$ for all a > 0 and c > 1

(i.e., construct a sequence that grows much faster than all polynomials, and grows much slower than all exponentials)

Let f be a bounded, continuous function on [c,∞).
How do we define the improper integral

 $\int_c^\infty f(x)\,dx\,?$

Let f be a continuous function on (a, b].
How do we define the improper integral

$$\int_a^b f(x) \, dx \, ?$$

Problem 1. Compute the value of this integral, from the definition.

$$\int_1^\infty \frac{1}{x^2 + x} dx$$

Hint:
$$\frac{1}{x^2 + x} = \frac{(x+1) - (x)}{x(x+1)}$$
.

Problem 1. Compute the value of this integral, from the definition.

$$\int_1^\infty \frac{1}{x^2 + x} dx$$

Hint:
$$\frac{1}{x^2 + x} = \frac{(x+1) - (x)}{x(x+1)}$$
.

Problem 2. Determine whether $\int_0^\infty \cos(x) dx$ converges or diverges.

Problem 1. Suppose f is continuous on $[1, \infty)$, and that $\lim_{x \to \infty} f(x) = 7$. What can you conclude about $\int_{1}^{\infty} f(x) dx$? Try to prove your answer. **Problem 1.** Suppose f is continuous on $[1, \infty)$, and that $\lim_{x \to \infty} f(x) = 7$.

What can you conclude about $\int_{1}^{\infty} f(x) dx$? Try to prove your answer.

Problem 2. Suppose f is continuous on $[1, \infty)$, and suppose you know that $\int_{1}^{\infty} f(x) dx$ converges.

What can you conclude about $\lim_{x\to\infty} f(x)$?

Problem 1. Suppose f is continuous on $[1, \infty)$, and that $\lim_{x \to \infty} f(x) = 7$.

What can you conclude about $\int_{1}^{\infty} f(x) dx$? Try to prove your answer.

Problem 2. Suppose f is continuous on $[1, \infty)$, and suppose you know that $\int_{1}^{\infty} f(x) dx$ converges.

What can you conclude about $\lim_{x\to\infty} f(x)$?

Suppose you know that $\lim_{x\to\infty} f(x)$ exists, now what can you conclude about $\lim_{x\to\infty} f(x)$?

Use the definition of improper integral to determine for which values of $p \in \mathbb{R}$ each of the following improper integrals converges.

