MAT137 - Week 3 Lecture 1

- Reminder: Problem Set 1 is available on the course website, and is due Thursday, September 26 by 11:59pm.
- Today's lecture will assume you have watched videos 2.1-2.4 For Tuesday's lecture, watch videos 2.5 and 2.6.

Absolute values and inequalities

Problem 1. Let a, b, c be real numbers. Assume that $a<b$. Which of the following must then be true?
(1) $a+c<b+c$.
(2) $a-c<b-c$.
(3) $a c<b c$.
(9) $a^{2}<b^{2}$.
(5) $\frac{1}{a}<\frac{1}{b}$.

Absolute values and inequalities

Problem. For what values of x is the following inequality true?

$$
|x-7|<3
$$

In other words, what values of x are within a distance 3 from 7 ?

Notice that thinking about the expression $|x-7|$ as "the distance between x and 7" makes this problem much easier.

What about the following inequality?

$$
0<|x-7|<3
$$

Some review of absolute values and inequalities

Problem. Suppose x is a real number that satisfies the inequality

$$
|x-2|<1
$$

What bounds, if any, can you put on $|x-7|$?

Here's how you should read this question: If x is within a distance 1 from 2, how far can x be from 7 ?

You have just proved the following conditional:

$$
|x-2|<1 \Longrightarrow 4<|x-7|<6
$$

Is the other direction true?

Some review of absolute values and inequalities

Now we know how to bound values of x with inqualities and absolute values. Let's use bounds on x to find bounds on the values of functions of x.
Problem. Suppose x is a real number that satisfies the inequality

$$
|x+7|<2
$$

How big can $|3 x+21|$ be?

In words:
If x is within a distance 2 from -7 , how far can $3 x$ be from -21 ?

You have just proved the following conditional:

$$
|x+7|<2 \Longrightarrow|3 x+21|<6
$$

Absolute values and conditionals

Now let's reverse idea in the previous exercise.

Problem 1. Find one positive number δ that makes the following conditional true.

$$
\text { If }|x-3|<\delta, \text { then }|4 x-12|<6
$$

In words:
How close should x be to 3 so that $4 x$ is within a distance 6 from 12?

Problem 2. Find all positive numbers δ that make the above conditional true.

Absolute values and conditionals

Now we know that for any $0<\delta \leq \frac{3}{2}$, the following conditional is true:

$$
\text { If }|x-3|<\delta, \text { then }|4 x-12|<6
$$

We'll work with this idea a bit.

Problem 3. Suppose we want a tighter restriction on $|4 x-12|$ in the conditional above. For example, let's say we want the distance between $4 x$ and 12 to be less than 1 :

$$
\text { If }|x-3|<\delta, \text { then }|4 x-12|<1
$$

Will all of the same values of δ that worked before work now?

No! To make $4 x$ closer to 12 , we must make x closer to 3 . Which values of δ will work here?

Absolute values and conditionals

Problem 4. Let ϵ be a fixed positive real number. Is it possible to find a positive δ that does not depend on ϵ and that makes the following conditional true?

$$
\text { If }|x-3|<\delta, \text { then }|4 x-12|<\epsilon
$$

No! The smaller ϵ is, the smaller δ should have to be! Just like before.

Problem 5. Let ϵ be a fixed positive real number. Find a value of δ, in terms of ϵ, that makes the following conditional true:

$$
\text { If }|x-3|<\delta, \text { then }|4 x-12|<\epsilon
$$

Absolute values and conditionals

Now we know that for a fixed positive real number ϵ, the following conditional is true:

$$
\text { If }|x-3|<\frac{\epsilon}{4}, \text { then }|4 x-12|<\epsilon
$$

Congratulations! You've just done the "hard part" of proving that $\lim _{x \rightarrow 3} 4 x=12$. $x \rightarrow 3$

Limits, intuitively

Recall the intuitive definition of a limit given in the videos:

$$
\lim _{x \rightarrow c} f(x)=L \quad \text { means }
$$

If x is close to c (but not equal to c), then $f(x)$ is close to L.

Slightly more precisely:
For every interval centred at L, there exists a small enough interval centred at c that gets mapped by f into the interval centred at L.

Limits, intuitively

Note that a limit never cares about what's happening at c. Only near c.

All of the following functions have the same limit L at c :

$L=f(c)$

$L \neq f(c)$

f is not defined at c

In particular, this means that in principle you can never evaluate a limit simply by plugging $x=c$ into the function.

Limits from a graph

Find the value of
(1) $\lim _{x \rightarrow 2} f(x)$
(2) $\lim _{x \rightarrow 0} f(f(x))$
(3) $\lim _{x \rightarrow-3} f(f(x))$
(9) $\lim _{x \rightarrow 2}[f(x)]^{2}$

