MAT137 - Taylor Series, Analytic functions

- Today's lecture will assume you have watched videos $14.5,14.6,14.7$, 14.8

For Tuesday's lecture, watch videos 14.9, 14.10

An explicit equation for Taylor polynomials

(1) Find one polynomial P of degree 3 that satisfies

$$
P(0)=1, \quad P^{\prime}(0)=5, \quad P^{\prime \prime}(0)=3, \quad P^{\prime \prime \prime}(0)=-7
$$

(2) Find all polynomials P that satisfy

$$
P(0)=1, \quad P^{\prime}(0)=5, \quad P^{\prime \prime}(0)=3, \quad P^{\prime \prime \prime}(0)=-7
$$

(3) Let f be a C^{3} function. Find an explicit formula for the 3-rd Taylor polynomial for a function f at 0 .
(9) Let f be a C^{∞} function, and let $n>0$. Find an explicit formula for the n-th Taylor polynomial for a function f at 0 .

Warm up: Recall the Definitions

Taylor Polynomial

Let f be C^{n} at a. The $n^{\text {th }}$ Taylor polynomial P_{n} for f about $x=a$ is the unique polynomial with the smallest degree satisfying:

$$
\lim _{x \rightarrow a} \frac{f(x)-P_{n}(x)}{(x-a)^{n}}=0
$$

The explicit formula for P_{n} is:

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Problem 1: Define the Taylor series of f at a.
Problem 2: Define what it means for f to be analytic at a.

Taylor polynomial of a polynomial

Let $f(x)=x^{3}$.
(1) Write the $n^{\text {th }}$ Taylor polynomial P_{n} for f at 0 Then write the Taylor series of f at 0 . Is f analytic at 0 ?
(2) Write the $n^{\text {th }}$ Taylor polynomial P_{n} for f at 1

Then write the Taylor series of f at 1 . Is f analytic at 1 ?

True or False

Let f be a function defined at least on an interval / centred at a. Are the following true or false?
(1) If f is analytic on I, then f is C^{∞} on I.
(2) If f is C^{∞} on I, then f is analytic on I
(3) If f is C^{∞} on I and it's Taylor series at a converges on I, then f is analytic on I.

A counterexample

Consider the following function:

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & x \neq 0 \\ 0 & x=0\end{cases}
$$

Here's the relevant part of its graph:

A counterexample

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & x \neq 0 \\ 0 & x=0\end{cases}
$$

It is a a tedious (but purely computational) exercise to check that:

$$
f^{(k)}(0)=0 \quad \text { for all } k=0,1,2, \ldots
$$

You may assume this without proof.

Exercise:

- What is the Taylor series of this function at 0 ?
- Where does this series converge absolutely?
- For which points x does the function equal its Taylor series?
- Is f analytic at 0 ?

Taylor series not at 0

Write the Taylor series...
(1) ...for $f(x)=e^{x}$ at $a=2$.
(2) ...for $g(x)=\sin x$ at $a=\frac{\pi}{4}$.
(3) ...for $H(x)=\frac{1}{x}$ at $a=3$.

You can do these problems in two ways:

- Method 1: Compute the first few derivatives, guess the pattern (and prove it by induction).
- Method 2: Use the substitution $u=x-a$ and reduce it to an old problem (without computing any derivatives).

More Taylor series

Do this as an exercise

Write the following functions as power series centered at 0 :
(1) $g(x)=\ln (1+x)$
(2) $f(x)=\sin ^{2} x$.

Hint: For each of the first two, take one single derivative. Then stop to think.

For the third one, do not try to multiply power series together. (It's possible, but harder than necessary here.)

