• Today's lecture will assume you have watched videos 3.1 - 3.5, 3.8. For Tuesday's lecture, watch videos 3.6, 3.7, 3.9

Some quick problems, to make sure you watched the videos

Problem 1. If we know f at a, then which of the following do we know?

Problem 2. If we know *f* on an interval centered at *a* but not *a*, then which of the following do we know?

Problem 3. If we know f on an interval centered at a, then which of the following do we know?

• whether
$$\lim_{x \to a} f(x)$$
 exists or not.

whether f is continuous at a or not.

- **(3)** whether f is differentiable at a or not.
- whether f is differentiable twice at a or not.

This is the same as asking: Can you find two functions f and g such that f(x) = g(x) for all $x \in "*"$ but f satisfies "#" and g satisfies NOT "#".

Let $a \in \mathbb{R}$.

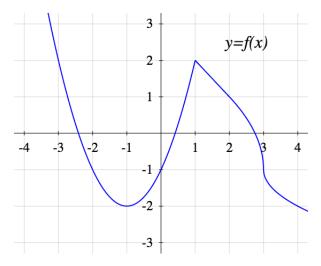
Let f be a function with domain \mathbb{R} . Assume f is differentiable everywhere. What can we conclude?

- f(a) is defined.
- $\lim_{x \to a} f(x) \text{ exists.}$
- *f* is continuous at *a*.

- f'(a) exists.
- $\lim_{x\to a} f'(x) \text{ exists.}$
- f' is continuous at a

Sketching the graph of f' from the graph of f

Below is the graph of the function f. Sketch the graph of f'.



Problem 1. Let f be the function defined by f(x) = x|x|.

Is f differentiable at 0? If so, what is its derivative?

Another way to write this function is
$$f(x) = \begin{cases} -x^2 & x < 0 \\ x^2 & x \ge 0 \end{cases}$$

Prove or disprove:

- If f is differentiable everywhere, and $\lim_{x\to\infty} f'(x) = 0$, then $\lim_{x\to\infty} f(x)$ exists.
- If lim f'(x) = ∞, then f is unbounded at any interval centered at a but not a.
- Let f and g be differentiable functions on \mathbb{R} such that for all x, $f(x) \leq g(x)$. Then $f'(x) \leq g'(x)$ for all x.
- Let g be a continuous function defined on \mathbb{R} . If $\lim_{x\to 0} \frac{g(x)}{x}$ exists then g is differentiable at 0. Solution in the next slide
- If f(x) = g(x) on an interval centered at a, then f is differentiable at a iff g is differentiable at a. If so, then f'(a) = g'(a).

• If f is differentiable at a, then $f'(a) = \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$.

Theorem

Let g be a continuous function defined on \mathbb{R} . If $\lim_{x \to 0} \frac{g(x)}{x}$ exists then g is differentiable at 0.

Since $\lim_{x\to 0} \frac{g(x)}{x}$ and $\lim_{x\to 0} x$ both exist, we can use the limit product rule to conclude the limit of the product exists; so we get:

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{g(x)}{x} x = \left(\lim_{x \to 0} \frac{g(x)}{x}\right) \left(\lim_{x \to 0} x\right) = \left(\lim_{x \to 0} \frac{g(x)}{x}\right) 0 = 0$$

Since g is continuous at 0, we also get:

$$g(0) = \lim_{x \to 0} g(x) = 0$$

We need to show that g is differentiable at 0. Note that:

$$\lim_{h \to 0} \frac{g(0+h) - g(0)}{h} = \lim_{h \to 0} \frac{g(h)}{h}$$

which exists as given in the question (notice that we used that g(0) = 0). So we conclude that g is differentiable at 0 and $g'(0) = \lim_{x \to 0} \frac{g(x)}{x}$.

Do this as an exercise **Problem.** Let $f(x) = \frac{1}{x^7}$.

- 1. Calculate the first few derivatives of f.
- 2. Make a conjecture for a formula for the n^{th} derivative of f.
- 3. Prove your formula. (The easiest way to do this is by induction.)