## MAT137 - Integration by Substitution

- Today's lecture will assume you have watched videos 9.1,9.4

For Monday's lecture, watch videos 9.5, 9.6, 9.10

## An optimization problem. (Remember those?)

For each real number $a>0$, consider the function

$$
f_{a}(x)=1+a-a x^{2} .
$$

At this point, stop and draw a rough sketch of what the graph of such a function looks like.

Find the value of $a$ that minimizes the area of the region bounded by the graph of $f_{a}$ and the $x$-axis.

## An application of FTC-1

Use FTC-1 to prove for every $x>0$ that

$$
\int_{0}^{x} \frac{d t}{1+t^{2}}+\int_{0}^{1 / x} \frac{d t}{1+t^{2}}=\frac{\pi}{2}
$$

## What's wrong with this computation?

First, note that $-\frac{1}{3 x^{3}}$ is an antiderivative for $\frac{1}{x^{4}}$.
So we compute:

$$
\int_{-1}^{1} \frac{1}{x^{4}} d x=-\left.\frac{1}{3 x^{3}}\right|_{-1} ^{1}=-\frac{2}{3}
$$

However, we know that $\frac{1}{x^{4}}$ is always positive, and so the definite integral should be a positive area.

What's wrong here? Is FTC2 not true?

## Substitution exercises.

Problem 1. Consider the following integrals. In each case, what should our $u$ be?
(1) $\int e^{7 x+5} d x$
(3) $\int \frac{\sin (\sqrt{x})}{\sqrt{x}} d x$
(2) $\int e^{x} \cos \left(e^{x}\right) d x$
(9) $\int \frac{x}{1+x^{4}} d x$

Problem 2. Compute $\int \frac{(\ln (\ln x))^{2}}{x(\ln x)} d x$.
Problem 3. Compute $\int x \sqrt[3]{x+3} d x$.

## A theorem about odd and even functions

Let's use substitution to prove a very useful theorem.

## Theorem

Let $f$ be a continuous function defined on all of $\mathbb{R}$.
(1) If $f$ is odd, then for any positive real number a,

$$
\int_{-a}^{a} f(x) d x=0
$$

(2) If $f$ is even, then for any positive real number a,

$$
\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x
$$

