## MAT137 - FTC

- Today's lecture will assume you have watched videos $8.3,8.4,8.5$, 8.6, 8.7

For Tuesday's lecture, watch videos 9.1, 9.4

## Important Theorems

Problem 1: Prove this theorem:

## Theorem

Let $f$ and $g$ be integrable functions on $[a, b]$ satisfying $f \geq g$.
Then

$$
\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x
$$

Problem 2: Prove this theorem:

## Theorem

Let $f$ be a continuous on $[a, b]$ satisfying $f \geq 0$. Suppose also that $f(c)>0$ for some $c \in(a, b)$. Then

$$
\int_{a}^{b} f(x) d x>0
$$

## Defining functions with integrals

Let $f$ be an integrable function defined on an interval $[a, b]$. Let $c$ and $d$ be elements of $[a, b]$.

Question: Consider the following expressions.
(1) $\int_{c}^{x} f(x) d x$
(3) $\int_{c}^{x} f(c) d t$
(2) $\int_{c}^{x} f(u) d u$
(9) $\int_{c}^{x} f(t) d t$

Which of these expressions make sense? Do any of them equal one another?

Let $f$ be a continuous function with domain $\mathbb{R}$.

Problem 1: Find one antiderivative of $f$.

Problem 2: Find all antiderivatives of $f$.
Problem 3: Find all antiderivatives $G$ of $f$ satisfying $G(5)=20$.

Remark: We have just shown that if we specify the derivative of a function and choose it's value at one point, then that determines the function uniquely.

Problem 4: What does FTC part 2 say about $\int_{a}^{b} f(t) d t$ ?

## True, false, or can't decide?

## Do this as an exercise

We want to find a function $H$ with domain $\mathbb{R}$ such that $H(1)=-2$ and such that

$$
H^{\prime}(x)=e^{\sin x} \quad \text { for all } x
$$

Decide whether each of the following statements is true, false, or you do not have enough information to decide.
(1) The function $H(x)=\int_{0}^{x} e^{\sin t} d t$ is a solution.
(2) The function $H(x)=\int_{2}^{x} e^{\sin t} d t$ is a solution.
(3) $\forall C \in \mathbb{R}$, the function $H(x)=\int_{0}^{x} e^{\sin t} d t+C$ is a solution.
(9) $\exists C \in \mathbb{R}$ s.t. the function $H(x)=\int_{0}^{x} e^{\sin t} d t+C$ is a solution.
(5) The function $H(x)=\int_{1}^{x} e^{\sin t} d t-2$ is a solution.
(0) There is more than one solution.

## Counter example for FTC?

Let $f$ be a differentiable function on $\mathbb{R}$. Recall that $f^{\prime}$ cannot have jump discontinuities.
Here is a counter example that uses FTC. What is wrong?

## Counter example

Let $g(x)=2$ when $x \geq 0$ and $g(x)=0$ when $x<0$.
Define $f$ in the following way:

$$
f(x)=\int_{0}^{x} g(t) d t
$$

So by the FTC, $f^{\prime}(x)=g(x)$, but $g$ has a jump discontinuity at $x=0$.

Hint: Compute $f$; then compute its derivative.

## The first FTC

The following statement of this theorem is a little bit more general than the one given in the video.

## Theorem (First Fundamental Theorem of Calculus)

Suppose $f$ is integrable on $[a, b]$, and let $c \in[a, b]$. Then the function

$$
F(x)=\int_{c}^{x} f(t) d t
$$

is continuous on $[a, b]$.
$F$ is differentiable at any point $x$ where $f$ is continuous, and at such a point $F^{\prime}(x)=f(x)$.

Prove it! Do this as an exercise.

## Using FTC1

The main thing we use FTC1 for in this course is proving FTC2. But it does have some applications of its own, as a new differentiation rule.

Problem 1: Find the derivative of $F(x)=\int_{0}^{x} \cos ^{2}(t) d t$.
Problem 2: Find the derivative of $G(x)=\int_{x}^{7} 7 t e^{t^{2}} d t$.
Problem 3: Find the derivative of $H(x)=\int_{0}^{x^{2}} \frac{\sin (t)}{t} d t$.
Hint: The answer is not $\frac{\sin \left(x^{2}\right)}{x^{2}}$.

## Going further...

Problem 4: Find the derivative of $S(x)=\int_{0}^{x} x e^{t^{2}} d t$.
Problem 5: Find the derivative of $F(x)=\int_{x^{2}}^{\sin (x)} \arctan (t) d t$.
Hint: Try to write $F(x)$ as a sum of two functions whose derivatives you know how to compute.

Okay! We're [trying to be] mathematicians, so it's time to generalize! Why solve one example, when we can solve all the examples?

Let $f, u, v$ be differentiable functions on $\mathbb{R}$, and define:

$$
F(x)=\int_{u(x)}^{v(x)} f(t) d t
$$

Find a formula for $F^{\prime}(x)$ in terms of some or all of $f, u, v, f^{\prime}, u^{\prime}, v^{\prime}$.

## An optimization problem. (Remember those?)

For each real number $a>0$, consider the function

$$
f_{a}(x)=1+a-a x^{2}
$$

At this point, stop and draw a rough sketch of what the graph of such a function looks like.

Find the value of $a$ that minimizes the area of the region bounded by the graph of $f_{a}$ and the $x$-axis.

