- Course website: http://uoft.me/MAT137
  My page: Course website → Resources → click on my name Precalc review: http://uoft.me/precalc
- Office hours: Wednesday 3-5 in PG003
- Today's lecture will assume you have watched videos 1.14 and 1.15. For Monday's lecture, watch videos 2.1 to 2.4.

Suppose we have some statements  $S_n$  for all  $n \ge 1$ .

In each of the following cases, which  $S_n$ 's will we know are true?

**O Case 1:** Suppose we have shown that:

- S<sub>7</sub> is true.
- $\forall n \geq 1$ ,  $S_n$  is true  $\Longrightarrow S_{n+1}$  is true.
- 2 Case 2: Suppose we have shown that:
  - $S_1$  is true.
  - $\forall n \geq 7$ ,  $S_n$  is true  $\Longrightarrow S_{n+1}$  is true.
- Ocase 3: Suppose we have shown that:
  - S<sub>4</sub> is true.
  - $\forall n \geq 1$ ,  $S_{n+1}$  is true  $\Longrightarrow S_n$  is true.
- Gase 4: Suppose we have shown that:
  - $S_1$  is true.
  - $\forall n \geq 1$ ,  $S_n$  is true  $\Longrightarrow S_{n+3}$  is true.

Here is **Case 4** again, from the previous slide:

Suppose we have shown that:

- S<sub>1</sub> is true.
- $\forall n \geq 1$ ,  $S_n$  is true  $\Longrightarrow S_{n+3}$  is true.

What's the least amount of additional work we can do to show that  $S_n$  is true for all n?

Prove the following by induction.

For any positive integer n,  $n^3 - n$  is divisible by 3.

## What is wrong with this proof by induction?

## Theorem

 $\forall N \in \mathbb{Z}$ , in every set of N cars, all the cars are of the same colour.

## Proof.

- **Base case.** It is clearly true for N = 1.
- Induction step.

Assume it is true for *N*. I'll show it is true for N + 1. Take a set of N + 1 cars. By induction hypothesis:

- The first N cars are of the same colour.
- The last N cars are of the same colour.



Hence the N + 1 cars are all of the same colour.