• Today's lecture will assume you have watched videos 14.3,14.4

For Monday's lecture, watch videos 14.5, 14.6, 14.7, 14.8

Let a_n be a sequence.

- The power series $\sum_{n=0}^{\infty} a_n x^n$ can either only converge at x = 0, or only converge on an interval (-R, R), or converge for all $x \in \mathbb{R}$.
- Suppose the power series converge on (-R, R], then $\frac{d}{dx} \sum_{n=0}^{\infty} a_n = \sum_{n=1}^{\infty} n a_n x^{n-1} \text{ for all } x \in (-R, R).$
- Suppose the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$ is R, then the same holds for the power series $\sum_{n=1}^{\infty} n a_n x^{n-1}$. (Suppose $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ exist).

What can you conclude?

Consider the power series $\sum_{n} a_n x^n$. Do not assume $a_n \ge 0$.

In each case, may the given series be absolutely convergent (AC)? conditionally convergent (CC)? divergent (D)? all of them?

IF	$\sum_{n} a_n 3^n \text{ is } \dots$	AC	СС	D
THEN	$\sum_{n} a_n 2^n \text{ may be } \dots$			
	$\sum_{n}a_{n}\left(-3\right) ^{n}\text{ may be }\ldots$			
	$\sum_n a_n 4^n$ may be			

Challenge

We want to calculate the value of $\sum_{n=1}^{\infty} \frac{n}{2^n}$.

• What is the value of the sum $\sum_{n=0}^{\infty} x^n$, when |x| < 1?

• What is the relation between $\sum_{n=1}^{\infty} x^{n}$ and $\sum_{n=1}^{\infty} n x^{n-1}$?

• Compute the value of the sum $\sum_{n=1}^{\infty} n x^{n-1}$.

• Compute the value of the sum $\sum_{n=1}^{\infty} n x^n$.

• Compute the value of the original series.

The definitions of Taylor polynomial: Warm up True and False

Let f be a function defined at and near $a \in \mathbb{R}$. Let $n \in \mathbb{N}$. Let P_n be the *n*-th Taylor polynomial for f at a.

Which ones of these is true?

- P_n is an approximation for f of order n near a.
- 2) f is an approximation for P_n of order n near a.

5 \exists a function R_n s.t. $f(x) = P_n(x) + R_n(x)$ and $\lim_{x \to a} \frac{R_n(x)}{(x-a)^n} = 0$.

•
$$f^{(n)}(a) = P_n^{(n)}(a)$$

• $\forall k = 0, 1, 2, ..., n, \quad f^{(k)}(a) = P_n^{(k)}(a)$
• If x is close to a then $f(x) = P_n(x)$

Ahmed Ellithy

An explicit equation for Taylor polynomials

Find one polynomial P of degree 3 that satisfies

$$P(0) = 1, \quad P'(0) = 5, \quad P''(0) = 3, \quad P'''(0) = -7$$

Find all polynomials P that satisfy

$$P(0) = 1, P'(0) = 5, P''(0) = 3, P'''(0) = -7$$

- Let f be a C^3 function. Find an explicit formula for the 3-rd Taylor polynomial for a function f at 0.
- Solution Control C

Use your formula for Taylor polynomials (or think of a clever way) to obtain the degree n Taylor polynomial of the following functions at x = 0:

•
$$f(x) = \arctan(x)$$

- $g(x) = \ln(1-x)$
- $h(x) = e^x$
- $A(x) = \sin x$
- $B(x) = \cos x$