MAT137 - Power series, Taylor Polynomials

- Today's lecture will assume you have watched videos 14.3,14.4 For Monday's lecture, watch videos 14.5, 14.6, 14.7, 14.8

Warm up True and False

Let a_{n} be a sequence.
(1) The power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ can either only converge at $x=0$, or only converge on an interval $(-R, R)$, or converge for all $x \in \mathbb{R}$.
(2) Suppose the power series converge on $(-R, R]$, then

$$
\frac{d}{d x} \sum_{n=0}^{\infty} a_{n}=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \text { for all } x \in(-R, R)
$$

(3) Suppose the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ is R, then the same holds for the power series $\sum_{n=1}^{\infty} n a_{n} x^{n-1}$. (Suppose $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ exist).

What can you conclude?

Consider the power series $\sum_{n} a_{n} x^{n}$. Do not assume $a_{n} \geq 0$.
In each case, may the given series be absolutely convergent (AC)? conditionally convergent (CC)? divergent (D)? all of them?

IF	$\sum_{n} a_{n} 3^{n}$ is \ldots	AC	CC	D
THEN	$\sum_{n} a_{n} 2^{n}$ may be \ldots			
	$\sum_{n} a_{n}(-3)^{n}$ may be \ldots			
	$\sum_{n} a_{n} 4^{n}$ may be \ldots			

Challenge

We want to calculate the value of $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$.
(1) What is the value of the sum $\sum_{n=0}^{\infty} x^{n}$, when $|x|<1$?
(2) What is the relation between $\sum_{n}^{\infty} x^{n}$ and $\sum_{n}^{\infty} n x^{n-1}$?

- Compute the value of the sum $\sum_{n=1}^{\infty} n x^{n-1}$.
- Compute the value of the sum $\sum_{n=1}^{\infty} n x^{n}$.
- Compute the value of the original series.

The definitions of Taylor polynomial: Warm up True and

 FalseLet f be a function defined at and near $a \in \mathbb{R}$. Let $n \in \mathbb{N}$.
Let P_{n} be the n-th Taylor polynomial for f at a.
Which ones of these is true?
(1) P_{n} is an approximation for f of order n near a.
(2) f is an approximation for P_{n} of order n near a.
(3) $\lim _{x \rightarrow a}\left[f(x)-P_{n}(x)\right]=0$
(9) $\lim _{x \rightarrow a} \frac{f(x)-P_{n}(x)}{(x-a)^{n}}=0$
(0. \exists a function R_{n} s.t. $f(x)=P_{n}(x)+R_{n}(x)$ and $\lim _{x \rightarrow a} \frac{R_{n}(x)}{(x-a)^{n}}=0$.
(0) $f^{(n)}(a)=P_{n}^{(n)}(a)$
(1) $\forall k=0,1,2, \ldots, n, \quad f^{(k)}(a)=P_{n}^{(k)}(a)$
(8) If x is close to a, then $f(x)=P_{n}(x)$.

An explicit equation for Taylor polynomials

(1) Find one polynomial P of degree 3 that satisfies

$$
P(0)=1, \quad P^{\prime}(0)=5, \quad P^{\prime \prime}(0)=3, \quad P^{\prime \prime \prime}(0)=-7
$$

(2) Find all polynomials P that satisfy

$$
P(0)=1, \quad P^{\prime}(0)=5, \quad P^{\prime \prime}(0)=3, \quad P^{\prime \prime \prime}(0)=-7
$$

(3) Let f be a C^{3} function. Find an explicit formula for the 3-rd Taylor polynomial for a function f at 0 .
(9) Let f be a C^{∞} function, and let $n>0$. Find an explicit formula for the n-th Taylor polynomial for a function f at 0 .

Examples

Use your formula for Taylor polynomials (or think of a clever way) to obtain the degree n Taylor polynomial of the following functions at $x=0$:

- $f(x)=\arctan (x)$
- $g(x)=\ln (1-x)$
- $h(x)=e^{x}$
- $A(x)=\sin x$
- $B(x)=\cos x$

