MAT137 - Alternating series, Conditional and absolute convergence

- Today's lecture will assume you have watched videos $13.18,13.19$, 14.1, 14.2

For Tuesday's lecture, watch videos 14.3,14.4

Positive and negative terms - part 1

- Let $\sum a_{n}$ be a series.
- Call \sum P.T. the sum of only the positive terms of the same series.
- Call \sum N.T. the sum of only the negative terms of the same series.

IF \sum P.T. is...	AND \sum N.T. is...	THEN $\sum a_{n}$ may be...
CONV	CONV	
∞	CONV	
CONV	$-\infty$	
∞	$-\infty$	

Positive and negative terms - part 2

- Let $\sum a_{n}$ be a series.
- Call \sum P.T. the sum of only the positive terms of the same series.
- Call \sum N.T. the sum of only the negative terms of the same series.

	\sum P.T.	\sum N.T.
If $\sum a_{n}$ is CONV		
If $\sum\left\|a_{n}\right\|$ is CONV		
If $\sum a_{n}$ is ABS CONV		
If $\sum a_{n}$ is COND CONV		
If $\sum a_{n}=\infty$		
If $\sum a_{n}$ is DIV (oscillating)		

The Ratio Test

Theorem (Ratio Test)

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence with non-zero terms.
Suppose also that $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ exists, and equals a real number L.
Then:
(1) IF $0 \leq L<1$, THEN the series $\sum a_{n}$ converges absolutely.
(2) IF $L>1$, THEN the series $\sum a_{n}$ diverges.
(3) IF $L=1$, THEN we can't conclude anything about $\sum a_{n}$.

Note: Note that $L=0$ is fine here, in contrast to the LCT. Don't mix them up!

Ratio test - Convergent or divergent?

For the following series, try to use the ratio test to determine whether they converge.

If the ratio test is inconclusive, try another test.

- $\sum_{n=1}^{\infty} \frac{3^{n}}{n!}$
- $\sum_{n=1}^{\infty} \frac{(2 n)!}{n!^{2} 3^{n+1}}$
- $\sum_{n=2}^{\infty} \frac{n!}{n^{n}}$
- $\sum_{n=2}^{\infty} \frac{1}{\ln n}$
- $\sum_{n=1}^{\infty} \frac{1}{n}$
- $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$

Proof for the Ratio Test

To prove the Ratio Test, the idea is to "compare" a series $\sum a_{n}$ with a geometric series.

For any geometric series $\sum b_{n}$, where $b_{n}=r^{n}$ for some r, we have that

$$
\left|\frac{b_{n+1}}{b_{n}}\right|=\frac{|r|^{n+1}}{|r|^{n}}=|r|,
$$

and that $\sum b_{n}$ converges if and only if $|r|<1$. We will use this idea to prove the Ratio Test.

Problem 1: Suppose that $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L$. Show that a_{n} for large n can be sandwiched by 2 geometric sequence:

$$
\begin{gathered}
\forall \varepsilon>0, \exists N \in \mathbb{N} \text { s.t. } \\
\forall n>N, \quad(L-\varepsilon)^{n-N}\left|a_{N}\right|<\left|a_{n}\right|<(L+\varepsilon)^{n-N}\left|a_{N}\right|
\end{gathered}
$$

Problem 2: Now conclude the proof for the ratio test.

A New Test

We can use the same idea to create a new test. There is more than one way to "compare" a series $\sum a_{n}$ with a geometric series.

For any geometric series $\sum b_{n}$, where $b_{n}=r^{n}$ for some r, we have that

$$
\text { For every } n \in \mathbb{N}, \quad \sqrt[n]{\left|b_{n}\right|}=\sqrt[n]{|r|^{n}}=|r|
$$

Suppose $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence such that $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L$.
What can you say about $\sum a_{n}$ when L is greater than, less than, or equal to 1 ?

The Root Test

The Root Test

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be any sequence.
Suppose also that $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$ exists, and equals a real number L.
Then:
(1) IF $0 \leq L<1$, THEN the series $\sum a_{n}$ converges absolutely.
(2) IF $L>1$, THEN the series $\sum a_{n}$ diverges.
(3) IF $L=1$, THEN we can't conclude anything about $\sum a_{n}$.

Replicate the proof for the Ratio Test to prove this. Hint: first prove that a_{n} for big n can be sandwiched by 2 geometric sequences:

$$
\forall \varepsilon>0, \exists N \in \mathbb{N} \text { s.t. }
$$

$$
\forall n>N, \quad(L-\varepsilon)^{n}<\left|a_{n}\right|<(L+\varepsilon)^{n}
$$

Power series - Intervals of convergence

Find the interval of convergence (i.e., not just the radius of convergence) of each of the following power series:

- $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
- $\sum_{n=1}^{\infty} \frac{n^{n}}{42^{n}} x^{n}$
- $\sum_{n=1}^{\infty} \frac{(x-5)^{n}}{n^{2} 2^{2 n+1}}$

What can you conclude?

Consider the power series $\sum_{n} a_{n} x^{n}$. Do not assume $a_{n} \geq 0$.
In each case, may the given series be absolutely convergent (AC)? conditionally convergent (CC)? divergent (D)? all of them?

IF	$\sum_{n} a_{n} 3^{n}$ is \ldots	AC	CC	D
THEN	$\sum_{n} a_{n} 2^{n}$ may be \ldots			
	$\sum_{n} a_{n}(-3)^{n}$ may be \ldots			
	$\sum_{n} a_{n} 4^{n}$ may be \ldots			

Writing functions as power series

Using the geometric series, we know how to write the function $F(x)=\frac{1}{1-x}$ as a power series centered at 0 :

$$
F(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad \text { for }|x|<1
$$

Write the following functions as power series centered at 0 :
(1) $f(x)=\frac{1}{1+x} \quad$ o $h(x)=\frac{1}{2-x}$
(2) $g(x)=\frac{x}{1-x^{2}}$

- $G(x)=\ln (1+x)$

Challenge

We want to calculate the value of $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$.
(1) What is the value of the sum $\sum_{n=0}^{\infty} x^{n}$, when $|x|<1$?

- What is the relation between $\sum_{n}^{\infty} x^{n}$ and $\sum_{n}^{\infty} n x^{n-1}$?
- Compute the value of the sum $\sum_{n=1}^{\infty} n x^{n-1}$.
- Compute the value of the sum $\sum_{n=1}^{\infty} n x^{n}$.
- Compute the value of the original series.

