MAT137 - Riemann sums, antiderivatives, and indefinite integrals

- Today's lecture will assume you have watched videos 7.5-7.12

For Monday's lecture, watch videos 8.3, 8.4, 8.5, 8.6, 8.7

Important Theorems

Do these before next lecture.
Problem 1: Prove this theorem:

Theorem

Let f and g be integrable functions on $[a, b]$ satisfying $f \geq g$. Then

$$
\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x
$$

Problem 2: Prove this theorem:

Theorem

Let f be a continuous on $[a, b]$ satisfying $f \geq 0$. Suppose also that $f(c)>0$ for some $c \in(a, b)$. Then

$$
\int_{a}^{b} f(x) d x>0
$$

Properties of the integral

Assume we know the following

$$
\int_{0}^{2} f(x) d x=3, \quad \int_{0}^{4} f(x) d x=9, \quad \int_{0}^{4} g(x) d x=2
$$

Compute:
(1) $\int_{0}^{2} f(t) d t$
(1) $\int_{2}^{4} f(x) d x$
(2) $\int_{0}^{2} f(t) d x$
(5) $\int_{-2}^{0} f(x) d x$
(3) $\int_{2}^{0} f(x) d x$
($\int_{0}^{4}[f(x)-2 g(x)] d x$

Definite vs. indefinite integrals

Let f be a continuous function defined on some interval $[a, b]$.
Question 1: The notation $\int f(x) d x$ represents...?
(1) A number.
(2) A function.
(3) A collection of functions.
(9) None of the above.

Question 2: What do these notations represent (same options)...?

$$
\int_{a}^{b} f(x) d x \quad \text { and } \quad \int_{a}^{x} f(t) d t
$$

Using Riemann sums

Theorem

Let f be an integrable function defined on an interval $[a, b]$.
Let $P_{1}, P_{2}, P_{3}, \ldots$ be a sequence of partitions of $[a, b]$ such that

$$
\lim _{n \rightarrow \infty}\left\|P_{n}\right\|=0
$$

Then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} S_{P_{n}}^{*}(f)
$$

Note that we don't need to specify which x_{i}^{*} 's we are using in each sub-interval of each partition. The result is true no matter which points we choose.

Riemann sums example

Calculate $\int_{0}^{1} x^{2} d x$ using Riemann sums.

Hints: Imitate the calculation in Video 7.11.
(1) Let $f(x)=x^{2}$ on $[0,1]$. Let $P_{n}=\{$ breaking the interval into n equal pieces $\}$.
(2) What is Δx_{i} ?
(3) Write $S_{P_{n}}^{*}(f)$ as a sum when we choose x_{i}^{*} as the right end-point.
(4) Add the sum
(5) Compute $\lim _{n \rightarrow \infty} S_{P_{n}}^{*}(f)$.

Helpful formulas: $\quad \sum_{i=1}^{N} i=\frac{N(N+1)}{2}, \quad \sum_{i=1}^{N} i^{2}=\frac{N(N+1)(2 N+1)}{6}$

Initial Value Problem

Find a function f such that

- For every $x \in \mathbb{R}, f^{\prime \prime}(x)=\sin x+x^{2}$,
- $f^{\prime}(0)=5$,
- $f(0)=7$.

