MAT137 - Riemann sums, antiderivatives, and indefinite integrals

• Today's lecture will assume you have watched videos 7.5-7.12

For Monday's lecture, watch videos 8.3, 8.4, 8.5, 8.6, 8.7

Important Theorems

Do these before next lecture. **Problem 1:** Prove this theorem:

Theorem

Let f and g be integrable functions on [a, b] satisfying $f \ge g$. Then

$$\int_a^b f(x) dx \ge \int_a^b g(x) dx$$

Problem 2: Prove this theorem:

Theorem

Let f be a continuous on [a, b] satisfying $f \ge 0$. Suppose also that f(c) > 0 for some $c \in (a, b)$. Then

$$\int_a^b f(x) dx > 0$$

Assume we know the following

$$\int_0^2 f(x) dx = 3, \qquad \int_0^4 f(x) dx = 9, \qquad \int_0^4 g(x) dx = 2.$$

Compute:

- $\int_0^2 f(t) dt$
- $\bigcirc \int_0^2 f(t) dx$
- $\bigcirc \int_2^0 f(x) dx$

 $\int_{2}^{4} f(x) dx$

$$\int_{-2}^{0} f(x) dx$$

(a) $\int_0^4 [f(x) - 2g(x)] dx$

Let f be a continuous function defined on some interval [a, b].

Question 1: The notation
$$\int f(x) dx$$
 represents...?

- A number.
- 2 A function.
- A collection of functions.
- One of the above.

Question 2: What do these notations represent (same options)...?

$$\int_{a}^{b} f(x) dx$$
 and $\int_{a}^{x} f(t) dt$

Theorem

Let f be an integrable function defined on an interval [a, b].

Let P_1, P_2, P_3, \ldots be a sequence of partitions of [a, b] such that

 $\lim_{n\to\infty}\|P_n\|=0.$

Then

$$\int_a^b f(x) \, dx = \lim_{n \to \infty} S_{P_n}^*(f).$$

Note that we don't need to specify which x_i^* 's we are using in each sub-interval of each partition. The result is true no matter which points we choose.

Calculate
$$\int_0^1 x^2 dx$$
 using Riemann sums.

Hints: Imitate the calculation in Video 7.11.

Let f(x) = x² on [0, 1].
Let P_n = {breaking the interval into n equal pieces}.

2 What is Δx_i ?

Solution Write $S_{P_n}^*(f)$ as a sum when we choose x_i^* as the right end-point.

Add the sum

 Find a function f such that

- For every $x \in \mathbb{R}$, $f''(x) = \sin x + x^2$,
- f'(0) = 5,
- f(0) = 7.