MAT137 - Integrable functions

- Today's lecture will assume you have watched videos 7.5-7.12

For Tuesday's lecture, watch videos 8.1, 8.2

Properties of lower and upper sums

Let f be a bounded function on $[a, b]$.
Problem 1: Let P be a partition. Prove that $L_{P}(f) \leq U_{P}(f)$
Problem 2: Let $P=\{a, b\}$ and $Q=\{a, c, b\}$ where $c \in(a, b)$. Prove that

$$
L_{P}(f) \leq L_{Q}(f), \quad U_{P}(f) \geq U_{Q}(f)
$$

(This is true in general whenever $P \subseteq Q$).

Provlem 3: Prove that

$$
\underline{I_{a}^{b}}(f):=\sup _{P} L_{P}(f) \leq \inf _{P} U_{P}(f)=: \overline{l_{a}^{b}}(f)
$$

A summary of the properties of lower and upper sums

We say f is integrable on $[a, b]$ if

$$
\underline{l_{a}^{b}}(f)=\overline{l_{a}^{b}}(f)
$$

If so, we define the integral to be

$$
\int_{a}^{b} f(x) d x=\underline{l_{a}^{b}}(f)=\overline{l_{a}^{b}}(f)
$$

True or False

If False, fix it and prove the corrected version. If True, prove it
(1) Let f and g be bounded functions on $[a, b]$. Then

$$
\sup _{x \in[a, b]}[f(x)+g(x)]=\sup _{x \in[a, b]} f(x)+\sup _{x \in[a, b]} g(x)
$$

(2) Let $a<b<c$. Let f be a bounded function on $[a, c]$. Then

$$
\sup _{x \in[a, c]} f(x)=\sup _{x \in[a, b]} f(x)+\sup _{x \in[b, c]} f(x)
$$

(3) Let f be a bounded function on $[a, b]$. Let $c \in \mathbb{R}$. Then:

$$
\sup _{x \in[a, b]}(c f(x))=c\left(\sup _{x \in[a, b]} f(x)\right)
$$

Lower and upper sums

Let f be a decreasing, bounded function on $[a, b]$.
Let $P=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ be some partition of $[a, b]$.
Draw yourself a picture of such a function and partition.
Which of the following expressions equal $L_{P}(f)$? What about $U_{f}(P)$? (There may be more than one answer for each.)
(1) $\sum_{i=0}^{N} \Delta x_{i} f\left(x_{i}\right)$
(3) $\sum_{i=0}^{N-1} \Delta x_{i} f\left(x_{i}\right)$
(5) $\sum_{i=1}^{N} \Delta x_{i} f\left(x_{i-1}\right)$
(2) $\sum_{i=1}^{N} \Delta x_{i} f\left(x_{i}\right)$
(4) $\sum_{i=1}^{N} \Delta x_{i} f\left(x_{i+1}\right)$
(6) $\sum_{i=0}^{N-1} \Delta x_{i+1} f\left(x_{i}\right)$

Recall: $\Delta x_{i}=x_{i}-x_{i-1}$.

Constant functions

Do this as an exercise
Let f be the constant function C, defined on $[a, b]$.
Clearly, by looking at a picture, we see that the area under the graph of f is $C(b-a)$. Now we want to prove from the definition that f is indeed integrable and the integral is $C(b-a)$.

Problem 1: Fix an arbitrary partition $P=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ of $[a, b]$, and explicitly compute $U_{P}(f)$ and $L_{P}(f)$.

Problem 2: Conclude that f is integrable on $[a, b]$ by showing that $\underline{l_{a}^{b}}(f)=\overline{l_{a}^{b}}(f)=C(b-a)$ and so

$$
\int_{a}^{b} C d x=C(b-1)
$$

The " ε-characterization" of integrability

True or False?

Let f be a bounded function on $[a, b]$.
(1) IF f is integrable on $[a, b]$

THEN
$\forall \varepsilon>0, \exists$ a partition P of $[a, b]$, s.t. $U_{P}(f)-L_{P}(f)<\varepsilon$.
(2) IF $\forall \varepsilon>0, \exists$ a partition P of $[a, b]$, s.t. $U_{P}(f)-L_{P}(f)<\varepsilon$,

THEN f is integrable on $[a, b]$

finer partitions
finer partitions

Example 2: non-continuous

Do this as an exercise
Let $f(x)=\left\{\begin{array}{ll}0 & x=0 \\ 5 & 0<x \leq 1\end{array}\right.$, defined on $[0,1]$.
(1) Let $P=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ be any partition of $[0,1]$.

What is $U_{P}(f)$? What is $L_{P}(f)$? (Draw a picture!)
(2) Find a partition P such that $L_{P}(f)=4.99$.
(3) For any $\varepsilon>0$, find a partition P such that $L_{P}(f)=5-\varepsilon$.
(9) What is the upper integral, $\overline{I_{0}^{1}}(f)$?
(3) What is the lower integral, $\underline{I}_{0}^{1}(f)$?
(c) Is f integrable on $[0,1]$?

Important Theorems

Problem 1: Prove this theorem:

Theorem

Let f and g be integrable functions on $[a, b]$ satisfying $f \geq g$.
Then

$$
\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x
$$

Problem 2: Prove this theorem:

Theorem

Let f be a continuous on $[a, b]$ satisfying $f \geq 0$. Suppose also hat $f(c)>0$ for some $c \in(a, b)$. Then

$$
\int_{a}^{b} f(x) d x>0
$$

