• Today's lecture will assume you have watched videos 4.3,4.4 4.5

For Monday's lecture, watch videos 4.6, 4.7, 4.8, 5.1, 5.2, 5.3, 5.4

Let

$$h(x) = x|x| + 1$$

- Calculate $h^{-1}(-8)$.
- Find an equation for $h^{-1}(x)$.
- Sketch the graphs of h and h^{-1} .
- Verify that for every $t \in \boxed{???}$, $h(h^{-1}(t)) = t$, and that for every $t \in \boxed{???}$, $h^{-1}(h(t)) = t$.

Problem 1. Let f be a function with domain D. Write the definition of

f is injective on D.

Problem 2. What is the relationship between injectivity and the existence of inverses?

Let $f : A \rightarrow B$ **Problem 1:** Which of the following is a sufficient condition for the existence of an inverse?

• There exists a function $g : B \to A$ such that $\forall x \in A$, g(f(x)) = x(We call g a left inverse)

 ② There exists a function g : B → A such that ∀y ∈ B, f(g(y)) = y (We call g a right inverse)

There exists a function g : B → A such that
∀x ∈ A, g(f(x)) = x
∀y ∈ B, f(g(y)) = y

Problem 2: In each case, what extra assumption do we need on f so that f will have an inverse?

Ahmed Ellithy

Composition of injective functions - part one

Assume that all functions in this problem have domain \mathbb{R} .

Prove the following theorem:

Theorem

Let f and g be functions.

IF f and g are injective, THEN f \circ g is injective.

How to proceed:

- Write the definition of what you want to prove.
- Is Figure out the structure of the proof.
- Omplete the proof, making sure you have used both hypotheses.

Do this as an exercise.

Assume that all functions in this problem have domain \mathbb{R} .

Prove the following theorem:

TheoremLet f and g be functions.IF f o g is injective, THEN g is injective.

How to proceed:

- Write the definition of what you want to prove.
- Is Figure out the structure of the proof.
- Omplete the proof, making sure you have used both hypotheses.