MAT137 - The Big Theorem

- Today's lecture will assume you have watched videos $11.7,11.8$ For Monday's lecture, watch videos 12.1, 12.4, 12.7, 12.8

Calculations

- $\lim _{n \rightarrow \infty} \frac{n!+2 e^{n}}{3 n!+4 e^{n}}$
- $\lim _{n \rightarrow \infty} \frac{2^{n}+(2 n)^{2}}{2^{n+1}+n^{2}}$
- $\lim _{n \rightarrow \infty} \frac{5 n^{5}+5^{n}+5 n!}{n^{n}}$

Big Theorem: TRUE or FALSE

Let a_{n} and b_{n} be positive sequences.
(1) IF $a_{n} \ll b_{n}$ THEN $\forall m \in \mathbb{N}, a_{m}<b_{m}$
(2) IF $a_{n} \ll b_{n}$ THEN $\exists m \in \mathbb{N}$ s.t. $a_{m}<b_{m}$
(3) IF $a_{n} \ll b_{n}$

THEN $\exists n_{0} \in \mathbb{N}$ s.t. $\forall m \in \mathbb{N}, m \geq n_{0} \Rightarrow a_{m}<b_{m}$
(1) IF $\forall m \in \mathbb{N}, a_{m}<b_{m}$ THEN $a_{n} \ll b_{n}$
(5) IF $\exists m \in \mathbb{N}$ s.t. $a_{m}<b_{m}$ THEN $a_{n} \ll b_{n}$
(0) IF $\exists n_{0} \in \mathbb{N}$ s.t. $\forall m \in \mathbb{N}, m \geq n_{0} \Rightarrow a_{m}<b_{m}$ THEN $a_{n} \ll b_{n}$
(1) IF $\forall \varepsilon>0, a_{n}<\varepsilon b_{n}$ for large enough n, THEN $a_{n} \ll b_{n}$

An application of the previous theorem

Prove that

$$
\sqrt{2+\sqrt{2+\sqrt{2+\ldots}}}=2
$$

(1) Explicitly write the expression as the limit of a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$
(2) Show that $0 \leq a_{n} \leq 2$ for all $n \in \mathbb{N}$.
(3) Show that $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is increasing.
(9) Conclude that $a:=\lim _{n \rightarrow \infty} a_{n}$ exists.
(6) Use that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n+1}$ and that $f(x):=\sqrt{2+x}$ is continuous at a to solve for a.

