• Today's lecture will assume you have watched videos 11.7, 11.8

For Monday's lecture, watch videos 12.1, 12.4, 12.7, 12.8

$$\lim_{n\to\infty}\frac{n!+2e^n}{3n!+4e^n}$$

$$\lim_{n \to \infty} \frac{2^n + (2n)^2}{2^{n+1} + n^2}$$

$$\lim_{n\to\infty}\frac{5n^5+5^n+5n!}{n^n}$$

Big Theorem: TRUE or FALSE

Let a_n and b_n be positive sequences.

- IF $a_n << b_n$ THEN $\forall m \in \mathbb{N}$, $a_m < b_m$
- ② IF $a_n << b_n$ THEN $\exists m \in \mathbb{N}$ s.t. $a_m < b_m$
- **③** IF $a_n << b_n$ THEN ∃ $n_0 \in \mathbb{N}$ s.t. $\forall m \in \mathbb{N}, m \ge n_0 \Rightarrow a_m < b_m$
- IF $\forall m \in \mathbb{N}$, $a_m < b_m$ THEN $a_n << b_n$
- IF $\exists m \in \mathbb{N}$ s.t. $a_m < b_m$ THEN $a_n << b_n$
- IF $\exists n_0 \in \mathbb{N}$ s.t. $\forall m \in \mathbb{N}, m \ge n_0 \Rightarrow a_m < b_m$ THEN $a_n << b_n$
- IF $\forall \varepsilon > 0$, $a_n < \varepsilon b_n$ for large enough n, THEN $a_n << b_n$

An application of the previous theorem

Prove that

$$\sqrt{2+\sqrt{2+\sqrt{2+\ldots}}}=2$$

- **(** Explicitly write the expression as the limit of a sequence $\{a_n\}_{n \in \mathbb{N}}$
- **2** Show that $0 \le a_n \le 2$ for all $n \in \mathbb{N}$.
- **3** Show that $\{a_n\}_{n \in \mathbb{N}}$ is increasing.
- **4** Conclude that $a := \lim_{n \to \infty} a_n$ exists.
- Solution Use that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} a_{n+1}$ and that $f(x) := \sqrt{2+x}$ is continuous at *a* to solve for *a*.