MAT137 - Alternating series, Conditional and absolute convergence

- Today's lecture will assume you have watched videos 13.15

For Monday's lecture, watch videos 13.18, 13.19, 14.1, 14.2

Rapid fire for Alternating Series

Convergent or divergent?
(1) $\sum_{n=1}^{\infty} \frac{1}{n}$
(2) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
(3) $\sum_{n=1}^{\infty} \frac{1}{\sin n}$
(9) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sin n}$
(6) $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
(6) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$

An AST example

Verify carefully the 3 hypotheses of the Alternating Series Test for

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{n-\pi}{e^{n}}
$$

Can we conclude it is convergent?

A counterexample to the AST?

Try to construct a series of the form $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ such that

- $b_{n}>0$ for all $n \geq 1$,
- $\lim _{n \rightarrow \infty} b_{n}=0$,
- the series $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ is divergent.

Hint: First, think about which hypothesis of the Alternating Series Test must fail in order for this to be possible.

A problem from a past final exam

Suppose we know:

- $\forall n \in \mathbb{N}, 0<a_{n}<1$;
- the series $\sum_{n}^{\infty} a_{n}$ is convergent,

Determine whether the following series converge, diverge, or we do not have enough information to decide:

- $\sum_{n}^{\infty} \sin a_{n}$
- $\sum_{n}^{\infty}\left(a_{n}\right)^{2}$
- $\sum_{n}^{\infty} \cos a_{n}$
- $\sum_{n}^{\infty} \sqrt{a_{n}}$

True or False - Absolute Values

(1) IF $\left\{a_{n}\right\}_{n=1}^{\infty}$ is convergent, THEN $\left\{\left|a_{n}\right|\right\}_{n=1}^{\infty}$ is convergent.
(2) IF $\left\{\left|a_{n}\right|\right\}_{n=1}^{\infty}$ is convergent, THEN $\left\{a_{n}\right\}_{n=1}^{\infty}$ is convergent.
(3) IF $\sum_{n=1}^{\infty} a_{n}$ is convergent, THEN $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent.
(9) IF $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent, THEN $\sum_{n=1}^{\infty} a_{n}$ is convergent.

Positive and negative terms - part 1

- Let $\sum a_{n}$ be a series.
- Call \sum P.T. the sum of only the positive terms of the same series.
- Call \sum N.T. the sum of only the negative terms of the same series.

IF \sum P.T. is...	AND \sum N.T. is...	THEN $\sum a_{n}$ may be...
CONV	CONV	
∞	CONV	
CONV	$-\infty$	
∞	$-\infty$	

