MAT137 - Alternating series, Conditional and absolute convergence

• Today's lecture will assume you have watched videos 13.15

For Monday's lecture, watch videos 13.18, 13.19, 14.1, 14.2

Convergent or divergent?

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sin n}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

Verify carefully the 3 hypotheses of the Alternating Series Test for

$$\sum_{n=0}^{\infty} (-1)^n \frac{n-\pi}{e^n}$$

Can we conclude it is convergent?

Try to construct a series of the form $\sum_{n=1}^{\infty} (-1)^n b_n$ such that

•
$$b_n > 0$$
 for all $n \ge 1$,

00

•
$$\lim_{n\to\infty} b_n = 0$$
,

• the series
$$\sum_{n=1}^{\infty} (-1)^n b_n$$
 is divergent.

Hint: First, think about which hypothesis of the Alternating Series Test must fail in order for this to be possible.

Suppose we know:

•
$$\forall n \in \mathbb{N}$$
, $0 < a_n < 1$;

 \sim

• the series
$$\sum_{n=1}^{\infty} a_n$$
 is convergent,

Determine whether the following series converge, diverge, or we do not have enough information to decide:

•
$$\sum_{n=1}^{\infty} \sin a_n$$

• $\sum_{n=1}^{\infty} \cos a_n$

•
$$\sum_{n}^{\infty} (a_n)^2$$

• $\sum_{n}^{\infty} \sqrt{a_n}$

n

• IF
$$\{a_n\}_{n=1}^{\infty}$$
 is convergent, THEN $\{|a_n|\}_{n=1}^{\infty}$ is convergent.

3 IF $\{|a_n|\}_{n=1}^{\infty}$ is convergent, THEN $\{a_n\}_{n=1}^{\infty}$ is convergent.

3 IF
$$\sum_{n=1}^{\infty} a_n$$
 is convergent, THEN $\sum_{n=1}^{\infty} |a_n|$ is convergent.

• IF $\sum_{n=1}^{\infty} |a_n|$ is convergent, THEN $\sum_{n=1}^{\infty} a_n$ is convergent.

- Let $\sum a_n$ be a series.
- $\bullet\,$ Call $\sum P.T.$ the sum of only the positive terms of the same series.
- Call \sum N.T. the sum of only the negative terms of the same series.

$IF \sum P.T. \ is$	AND $\sum N.T.$ is	THEN $\sum a_n$ may be
CONV	CONV	
∞	CONV	
CONV	$-\infty$	
∞	$-\infty$	