
MAT137 - Properties of Sequences, Theorems about
sequences

Today’s lecture will assume you have watched videos 11.3, 11.4, 11.5,
11.6

For Tuesday’s lecture, watch videos 11.7, 11.8
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Definition of limit of a sequence (continued)

Let {an}∞
n=0 be a sequence. Let L ∈ R.

Which statements are equivalent to “{an}∞
n=0 −→ L”?

10 ∀ε > 0, the interval (L− ε, L + ε) contains all the elements of
the sequence, except the first few.

11 ∀ε > 0, the interval (L− ε, L + ε) contains all the elements of
the sequence, except finitely many.

12 ∀ε > 0, the interval (L− ε, L + ε) contains infinitely many of the
terms of the sequence.

13 Every interval that contains L must contain all but finitely many
of the terms of the sequence.

14 Every open interval that contains L must contain all but finitely
many of the terms of the sequence.
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True or False – Monotonic sequences vs. functions

Let f be a function defined at least on [1,∞).
We define a sequence by an = f (n).

1 IF f is increasing, THEN {an}∞n=0 is increasing.

2 IF {an}∞n=0 is increasing, THEN f is increasing.

(If you think one of them is true, try to prove it.
If you think one of them is false, give a counterexample.)
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Continuous functions respect sequence convergence

The following is a very useful theorem. Write a proof for it!

Theorem
Let {an}∞n=0 be a sequence. Let L ∈ R.

IF
{
{an}∞n=0 −→ L
f is continuous at L

THEN {f (an)}∞n=0 −→ f (L).

1 Write the definitions of the two hypotheses and the conclusion.
2 Using the definition of the conclusion, figure out the structure of the

proof.
3 Do some rough work if necessary.
4 Write a formal proof.
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Quick review – True or False?

1 If a sequence is convergent, then it is bounded.
2 If a sequence is convergent, then it is eventually

monotonic.
3 If a sequence diverges and is increasing, then there

exists n ∈ N such that an > 100.
4 If limn→∞ an = L, then an < L + 1 for all n.
5 If a sequence is bounded and eventually monotonic,

then it converges.
6 If limn→∞ a2n = L, then limn→∞ an = L.
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A recursively-defined sequence

Consider the sequence {an}∞n=0 defined by
a0 = 1

∀n ≥ 1, an+1 = an + 2
an + 3

Compute a1, a2, and a3.

Does it converge?
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Is this proof correct?

Let {an}∞n=0 be the sequence in the previous slide.

Claim:
{an}∞n=0 converges to −1 +

√
3.

Proof.
Let L = lim

n→∞
an.

Starting with the recurrence relation and taking limits of both sides, we get

lim
n→∞

an+1 = lim
n→∞

[an + 2
an + 3

]
=⇒ L = L + 2

L + 3 =⇒ L2 + 2L− 2 = 0

Solving the quadratic yields L = −1±
√

3.

Every term of the sequence is postive, so L cannot be negative. So we
conclude that L = −1 +

√
3.
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Another recursively-defined sequence

Consider the sequence bn defined by b0 = 1
∀n ≥ 1, bn+1 = 1− bn

1 Using the same technique as in the previous slide,
compute the limit of the sequence.

2 AFTER you have computed the limit, compute the
first five terms of the sequence by hand.

What happened?
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The first recursive sequence, done correctly.

Consider the sequence {an}∞n=0 defined by
a0 = 1

∀n ≥ 1, an+1 = an + 2
an + 3

1 Prove {an}∞n=0 is bounded below by 0.
2 Prove {an}∞n=0 is decreasing (use induction).
3 Prove {an}∞n=0 is convergent (use a theorem).
4 Now the calculation in the earlier slide is correct and

justified.
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Another recursive seqeunce

Do this as an exercise.

Define the sequences an and bn in the following way:
 a0 = 1, b0 = 2
∀n ≥ 1, an+1 =

√
anbn, bn+1 = an+bn

2

Show that limn→∞ an and limn→∞ bn both exist and are equal.
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