MAT137 - Integral and Comparison tests, Alternating series

 Today's lecture will assume you have watched videos 13.10, 13.11, 13.12, 13.13, 13.14

For Tuesday's lecture, watch videos 13.15

Rapid fire

For which values of $a \in \mathbb{R}$ are these series convergent?

$$\bullet \sum_{n=0}^{\infty} \frac{1}{a^n}$$

$$\sum_{n=0}^{\infty} \frac{1}{n^a}$$

$$\sum_{n=0}^{\infty} a^n$$

$$\sum_{n=0}^{\infty} n^a$$

$$\sum_{n=0}^{\infty} n$$

More rapid fire

Convergent or divergent?

Necessary condition: TRUE or FALSE

- IF $\lim_{n\to\infty} a_n = 0$, THEN $\sum_{n=0}^{\infty} a_n$ is convergent.
- ② IF $\lim_{n\to\infty} a_n \neq 0$, THEN $\sum_{n=1}^{\infty} a_n$ is divergent.
- 4 IF $\sum_{n=0}^{\infty} a_n$ is divergent THEN $\lim_{n\to\infty} a_n \neq 0$.

More TRUE or FALSE

Let $\sum a_n$ be a series. Let $\{S_n\}_{n=0}^{\infty}$ be its partial-sum sequence.

- **1** IF the sequence $\{S_n\}_{n=0}^{\infty}$ is bounded and eventually monotonic, THEN the series $\sum a_n$ is convergent.
- ② IF the series $\sum_{n=1}^{\infty} a_n$ converges THEN the sequence $\{S_n\}_{n=0}^{\infty}$ is eventually monotonic.
- **③** If $\forall n \in \mathbb{N}, a_n > 0$ THEN the sequence $\{S_n\}_{n=0}^{\infty}$ is increasing
- If $\sum_{n=0}^{\infty} a_n$ is convergent THEN $\lim_{k \to \infty} \left[\sum_{n=0}^{\infty} a_n \right] = 0$

Even more TRUE or FALSE

Let $\sum_{n=0}^{\infty} a_n$ be a series. Let $\{S_n\}_{n=0}^{\infty}$ be its partial-sum sequence. s

- **1** IF $\lim_{n\to\infty} S_{2n}$ exists, THEN $\sum_{n=0}^{\infty} a_n$ is convergent.
- ② IF $\lim_{n\to\infty} S_{2n}$ exists and $\lim_{n\to\infty} a_n = 0$,

THEN $\sum_{n=0}^{\infty} a_n$ is convergent.

3 IF $\sum_{n=0}^{\infty} a_{2n}$ is convergent and $\sum_{n=0}^{\infty} a_{2n+1}$ is convergent,

THEN $\sum_{n=0}^{\infty} a_n$ is convergent.

4 IF $\sum_{n=0}^{\infty} a_{2n}$ is divergent and $\sum_{n=0}^{\infty} a_{2n+1}$ is convergent,

THEN $\sum_{n=0}^{\infty} a_n$ is divergent.

Slower questions

Convergent or divergent?

$$\sum_{n=0}^{\infty} e^{-n^2}$$

Slower questions

Convergent or divergent?

$$\sum_{n=0}^{\infty} \frac{2^{n}-40}{3^{n}-20}$$