MAT137 - Integral and Comparison tests, Alternating

 series- Today's lecture will assume you have watched videos 13.10, 13.11, 13.12, 13.13, 13.14

For Tuesday's lecture, watch videos 13.15

Rapid fire

For which values of $a \in \mathbb{R}$ are these series convergent?
$\cdot \cdot \frac{1}{2} \frac{1}{7}$
(3) $\sum_{n=0}^{\infty} a^{n}$
(2) $\sum_{n=0}^{\infty} \frac{1}{n^{a}}$
(9) $\sum_{n=0}^{\infty} n^{a}$

More rapid fire

Convergent or divergent?
(1) $\sum_{n}^{\infty} \frac{n^{10}+17 n^{7}+3}{n^{11}}$
(3) $\sum_{n}^{\infty} n!e^{-n}$
(2) $\sum_{n}^{\infty} \frac{\sqrt[3]{n^{2}+1}+1}{\sqrt{n^{4}+n}+n+1}$
(9) $\sum_{n}^{\infty} \frac{3^{n}}{n 2^{2 n}}$

Necessary condition: TRUE or FALSE

(1) IF $\lim _{n \rightarrow \infty} a_{n}=0$, THEN $\sum_{n}^{\infty} a_{n}$ is convergent.
(2) IF $\lim _{n \rightarrow \infty} a_{n} \neq 0$, THEN $\sum_{n}^{\infty} a_{n}$ is divergent.
(3) IF $\sum_{n}^{\infty} a_{n}$ is convergent THEN $\lim _{n \rightarrow \infty} a_{n}=0$.
(9) IF $\sum_{n}^{\infty} a_{n}$ is divergent THEN $\lim _{n \rightarrow \infty} a_{n} \neq 0$.

More TRUE or FALSE

Let $\sum_{n=0}^{\infty} a_{n}$ be a series. Let $\left\{S_{n}\right\}_{n=0}^{\infty}$ be its partial-sum sequence.
(1) IF the sequence $\left\{S_{n}\right\}_{n=0}^{\infty}$ is bounded and eventually monotonic,

THEN the series $\sum_{n=0}^{\infty} a_{n}$ is convergent.
(2) IF the series $\sum_{n=0}^{\infty} a_{n}$ converges

THEN the sequence $\left\{S_{n}\right\}_{n=0}^{\infty}$ is eventually monotonic.
(3) If $\forall n \in \mathbb{N}, a_{n}>0$ THEN the sequence $\left\{S_{n}\right\}_{n=0}^{\infty}$ is increasing
(9) If $\sum_{n=0}^{\infty} a_{n}$ is convergent THEN $\lim _{k \rightarrow \infty}\left[\sum_{n=k}^{\infty} a_{n}\right]=0$

Even more TRUE or FALSE

Let $\sum_{n=0}^{\infty} a_{n}$ be a series. Let $\left\{S_{n}\right\}_{n=0}^{\infty}$ be its partial-sum sequence. s
(1) IF $\lim _{n \rightarrow \infty} S_{2 n}$ exists, THEN $\sum_{n=0}^{\infty} a_{n}$ is convergent.
(2) IF $\lim _{n \rightarrow \infty} S_{2 n}$ exists and $\lim _{n \rightarrow \infty} a_{n}=0$,

THEN $\sum_{n=0}^{\infty} a_{n}$ is convergent.
(3) IF $\sum_{n=0}^{\infty} a_{2 n}$ is convergent and $\sum_{n=0}^{\infty} a_{2 n+1}$ is convergent,

THEN $\sum_{n=0}^{\infty} a_{n}$ is convergent.
(4) IF $\sum_{n=0}^{\infty} a_{2 n}$ is divergent and $\sum_{n=0}^{\infty} a_{2 n+1}$ is convergent,

THEN $\sum_{n=0}^{\infty} a_{n}$ is divergent.

Slower questions

Convergent or divergent?
(c) $\sum_{n}^{\infty} \frac{2^{n}-40}{3^{n}-20}$
(2) $\sum_{n}^{\infty} \frac{1}{n \ln n}$
(3) $\sum_{n}^{\infty} e^{-n^{2}}$

Slower questions

Convergent or divergent?
(1) $\sum_{n}^{\infty} \frac{2^{n}-40}{3^{n}-20}$
(2) $\sum_{n}^{\infty} \frac{1}{n \ln n}$
(3) $\sum_{n}^{\infty} e^{-n^{2}}$
(9) $\sum_{n}^{\infty} \sin ^{2} \frac{1}{n}$
($\sum_{n}^{\infty} \frac{1}{n(\ln n)^{3}}$

- $\sum_{n}^{\infty} \frac{(\ln n)^{20}}{n^{2}}$

