MAT137 - Week 5 Lecture 2

- Reminder: Problem Set 2 is available on the course website, and is due Thursday, 10 October by 11:59pm.
- Today's lecture will assume you have watched videos 2.19-2.20 For Tuesday's lecture, watch videos 2.21-2.22.

True or False

- If $f(x)>g(x)$ on an interval centered at a but maybe not a, then $\lim _{x \rightarrow a} f(x)>\lim _{x \rightarrow a} g(x)$ (assuming the limits exist).
- $\lim _{x \rightarrow 0} f(x)=0$ iff $\lim _{x \rightarrow 0} f(f(x))=0$
- If g is a non-zero function that is bounded on \mathbb{R}, then $\lim _{x \rightarrow 0} \frac{g(x)}{x^{2}}=\infty$
- If g is a function satisfying $|g(x)|>1$ on \mathbb{R}, then $\lim _{x \rightarrow 0} \frac{g(x)}{x^{2}}=\infty$
- If $\lim _{x \rightarrow 0} \frac{g(x)}{x}$ exists, then $\lim _{x \rightarrow 0} g(x)=0$

Trigonometric limits

Using that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ (and maybe some simple trig identities), compute the following limits:
(1) $\lim _{x \rightarrow 0} \frac{\cos x}{x}$
(9) $\lim _{x \rightarrow 0} \frac{\sin e^{x}}{e^{x}}$
(2) $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x}$
(6) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$
(3) $\lim _{x \rightarrow \infty} x \sin \frac{1}{x}$
(6) $\lim _{x \rightarrow 0} \frac{\sin x}{x^{2}}$

Limits at infinity

Compute the following limits.
(1) $\lim _{x \rightarrow \infty}\left(x^{7}-2 x^{5}+11\right)$
(9) $\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+3}{3 x^{2}+4 x+5}$
(2) $\lim _{x \rightarrow \infty}\left(x^{2}-\sqrt{x^{5}+1}\right)$
(3) $\lim _{x \rightarrow \infty} \frac{x^{2}+11}{x+1}$
(6) $\lim _{x \rightarrow \infty} \frac{x^{3}+\sqrt{2 x^{6}+1}}{2 x^{3}+\sqrt{x^{5}+1}}$
repeat all of them when ∞ is replaced by $-\infty$

Which solution is correct?

Compute $L=\lim _{x \rightarrow-\infty}\left[x-\sqrt{x^{2}+x}\right]$.

- Solution 1

$$
\begin{aligned}
L & =\lim _{x \rightarrow-\infty} \frac{\left[x-\sqrt{x^{2}+x}\right]\left[x+\sqrt{x^{2}+x}\right]}{\left[x+\sqrt{x^{2}+x}\right]}=\lim _{x \rightarrow-\infty} \frac{x^{2}-\left(x^{2}+x\right)}{\left[x+\sqrt{x^{2}+x}\right]} \\
& =\lim _{x \rightarrow-\infty} \frac{-x}{x\left[1+\sqrt{1+\frac{1}{x}}\right]}=\lim _{x \rightarrow-\infty} \frac{-1}{\left[1+\sqrt{1+\frac{1}{x}}\right]}=\frac{-1}{2}
\end{aligned}
$$

- Solution 2

$$
L=\lim _{x \rightarrow-\infty}\left[x-\sqrt{x^{2}+x}\right]=(-\infty)-\infty=-\infty
$$

