
MAT137 - Integrable functions

Reminder: Problem Set 5 is due this Thursday at 11:59pm.

Today’s lecture will assume you have watched videos 7.5, 7.6, 7.7,
7.8, 7.9.

For Monday’s lecture, watch videos 7.5, 7.6, 7.7, 7.8, 7.9 again!
and also 7.10, 7.11, 7.12
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Useful equivalent definition of supremum

Recall the other equivalent definition of supremum:

Let M be an upper bound for the set A.
Then M = sup A if and only if the following is satisfied:

∀L < M, ∃x ∈ A such that L < x ≤ M

Prove this lemma.

Lemma
Let M be an upper bound for the set A.
Then M = sup A if and only if the following is satisfied:

∀ε > 0, ∃x ∈ A such that M − ε < x ≤ M
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Useful Lemma

Problem: Is this true or false?

Let f be a bounded function on [a, b].
Let M ∈ R satisfy ∀x ∈ [a, b], f (x) < M.
Then sup

x∈[a,b]
f (x) < M

FALSE. Prove the corrected version:

Lemma
Let f be a bounded function on [a, b].
Let M ∈ R satisfy ∀x ∈ [a, b], f (x) < M.
Then sup

x∈[a,b]
f (x) ≤ M
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True or False

We will do this slide next lecture. Please attempt it before.
If False, fix it and prove the corrected version. If True, prove it

1 Let f and g be bounded functions on [a, b]. Then

sup
x∈[a,b]

[f (x) + g(x)] = sup
x∈[a,b]

f (x) + sup
x∈[a,b]

g(x)

2 Let a < b < c. Let f be a bounded function on [a, c]. Then

sup
x∈[a,c]

f (x) = sup
x∈[a,b]

f (x) + sup
x∈[b,c]

f (x)

3 Let f be a bounded function on [a, b]. Let c ∈ R. Then:

sup
x∈[a,b]

(cf (x)) = c
(

sup
x∈[a,b]

f (x)
)
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Warm up: partitions

Which of the following are partitions of [0, 2]?

1 [0, 2]
2 (0, 2)
3 {0, 2}
4 {1, 2}
5 {0, 1.5, 1.6, 1.7, 1.8, 1.9, 2}
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Warm up: lower and upper sums

Let f (x) = cos x .

Consider the partition P = {0, π2 , π,
3π
2 , 2π} of the interval

[0, 2π].

Problem. Compute LP(f ) and UP(f ).
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Properties of lower and upper sums

Let f be a bounded function on [a, b].

Problem 1: Let P be a partition. Prove that LP(f ) ≤ UP(f )

Problem 2: Let P = {a, b} and Q = {a, c, b} where c ∈ (a, b). Prove
that

LP(f ) ≤ LQ(f ), UP(f ) ≥ UQ(f )

(This is true in general whenever P ⊆ Q ).

Do this as an exercise. We will do it next lecture.
Provlem 3: Prove that

Ib
a (f ) := sup

P
LP(f ) ≤ inf

P
UP(f ) =: Ib

a (f )
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