MAT137 - Sums and sigmas, Suprema and infima

- My office hours has changed. Now they are Mon 2-4 in PG 003.
- Reminder: Problem Set 5 is due this Thursday at 11:59pm.
- We will finally start integration! Forget EVERYTHING you "know" about integration.
- Today's lecture will assume you have watched videos 7.1-7.4.

For Tuesday's lecture, watch videos 7.5, 7.6, 7.7, 7.8, 7.9. They are hard.

Warm-up: Sigma Notation

Recall:

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}
$$

Compute

$$
\sum_{i=2}^{4}(2 i+1)
$$

Sigma notation exercise

Consider the following sum written in sigma notation

$$
\sum_{j=0}^{N} \frac{x^{j}}{2 j+1}
$$

Does the value of this expression depend on...
(1) ...x only?
(9) ... x and j ?
(2) $\ldots N$ only?
(6) $\ldots j$ and N ?
(3)...j only?
(6) $\ldots x$ and N ?

This defines a function of x :

$$
f(x):=\sum_{j=0}^{N} \frac{x^{j}}{2 j+1} .
$$

Sigma notation exercise

Do this slide as an exercise.
Write the following sums as a single sum in sigma notation. There may be many ways to do each of them.
(1) $2^{7}+3^{7}+4^{7}+5^{7}+6^{7}+7^{7}$
(2) $3+5+7+9+\cdots 75+77$
(3) $\sum_{i=1}^{100} a_{i}-\sum_{i=1}^{77} a_{i}$
(9) $\cos (0)-\cos (2)+\cos (4)-\cos (6)+\cos (8)-\cdots \pm \cos (2 N)$
(6) $-\frac{2 x^{4}}{3!}+\frac{3 x^{5}}{4!}-\frac{4 x^{6}}{5!}+\cdots-\frac{98 x^{100}}{99!}$

Double sums

Compute:

(1) $\sum_{i=1}^{N} \sum_{k=1}^{N} 1$
(3) $\sum_{i=1}^{N} \sum_{k=1}^{i} i$
(5) $\sum_{i=1}^{N} \sum_{k=1}^{i}(i k)$
(2) $\sum_{i=1}^{N} \sum_{k=1}^{i} 1$
(4) $\sum_{i=1}^{N} \sum_{k=1}^{i} k$

The following formulas may be useful:

$$
\sum_{j=1}^{N} j=\frac{N(N+1)}{2}, \quad \sum_{j=1}^{N} j^{2}=\frac{N(N+1)(2 N+1)}{6}, \quad \sum_{j=1}^{N} j^{3}=\frac{N^{2}(N+1)^{2}}{4}
$$

Can we change the order of two sums?

- $A_{i, k}$ is a function of 2 variables.

For example, $A_{i, k}=\frac{i}{k+i^{2}}$.

- Decide what to write instead of each "?" so that the following identity is true:
(1) $\sum_{i=1}^{N} \sum_{k=1}^{M} A_{i, k}=\sum_{k=?}^{?} \sum_{i=?}^{?} A_{i, k}$
(2) $\sum_{i=1}^{N} \sum_{k=1}^{i} A_{i, k}=\sum_{k=?}^{?} \sum_{i=?}^{?} A_{i, k}$

Warm up: Supremum and Infimum

Let $A \subset \mathbb{R}$ that is bounded from above and nonempty.
Let $U:=\{b \in \mathbb{R}: \forall a \in A, b \geq a\}$
Problem 1: Define sup A and $\inf U$ and explain why they both exist.
Problem 2: Show that U has a minimum and conclude that

$$
\inf U=\sup A
$$

Infima and suprema exercise

For each of the following sets of real numbers

- find its supremum or convince yourself it does not exist;
- do the same for the infimum;
- find the maximum and minimum, if they exist.
(1) $A_{1}=(0,7]$
(2) $A_{2}=\{7,8,9\}$
(3) $A_{3}=\{x \in \mathbb{R}: x<0$ or $x \geq 7\}$
(9) $A_{4}=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
(5) $A_{5}=\left\{\ldots, \frac{1}{343}, \frac{1}{49}, \frac{1}{7}, 1,7,49,343, \ldots\right\}=\left\{7^{n}: n \in \mathbb{Z}\right\}$.

Empty set questions

(1) Does \emptyset have an upper bound?
(2) Does \emptyset have a supremum?
(3) Does \emptyset have a maximum?
(9) Is \emptyset bounded above?

Recall:

Let $A \subseteq \mathbb{R}$. Let $a \in \mathbb{R}$.

- a is an upper bound of A means: $\forall x \in A, x \leq a$.
- a is the least upper bound (lub) or supremum (sup) of A means
- a is an upper bound of A, and
- there are no smaller upper bounds.

Infima and suprema exercise

Recall again that M is the supremum of a set A if...
(1) ... M is an upper bound of A;
(2) ... and there are no smaller upper bounds of A.
(Write down what that means precisely)

With this in mind, assume M is an upper bound for a set A.
Which of the following is equivalent to " M is the supremum of A "?
(1) If L is an upper bound of A, then $L \geq M$.
(2) $\forall L \geq M, \quad L$ is an upper bound of A.
(3) $\forall L \leq M, \exists x \in A$ such that $L<x$.
(9) $\forall L<M, \exists x \in A$ such that $L<x$.
(3) $\forall L<M, \exists x \in A$ such that $L<x \leq M$.
(0) $\forall \epsilon>0, \exists x \in A$ such that $M-\epsilon<x \leq M$.

