MAT137 - Week 12 Lecture 3

- Please fill out the feedback form by Friday December 13. Your responses are anonymous. The link is available in the announcement titled "Mid-year course feedback".
- Today's lecture will assume you have watched videos $6.13,6.14,6.15$.

"Secant segments are above the graph"

Let f be a function defined on an interval I.
In Video 6.11 you learned that an alternative way to define " f is concave up on I " is to say that "the secant segments stay above the graph".

Rewrite this as a precise mathematical statement of the form

$$
" \forall a, b, c \in I, \quad a<b<c \Longrightarrow \text { an inequality involving } f, a, b, c \text { " }
$$

Prove the forward direction!: If f is concave up on I, then it satisfies the above statement.

Monotonicity and concavity

Let $f(x)=x e^{-x^{2} / 2}$.
(1) Find the intervals where f is increasing or decreasing, and its local extrema.
(2) Find the intervals where f is concave up or concave down, and its inflection points.

- Calculate $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.
- Using this information, sketch the graph of f.

To save you time, here are the derivatives of f :

$$
f^{\prime}(x)=-e^{-x^{2} / 2}\left(x^{2}-1\right) \quad f^{\prime \prime}(x)=e^{-x^{2} / 2} x\left(x^{2}-3\right)
$$

Lots of asymptotes

Consider the function $f(x)=\frac{x-1}{\sqrt{4 x^{2}-1}}$.
Here are its first two derivatives, fully factored:

$$
f^{\prime}(x)=\frac{4 x-1}{\left(4 x^{2}-1\right)^{3 / 2}} \quad f^{\prime \prime}(x)=-\frac{4\left(8 x^{2}-3 x+1\right)}{\left(4 x^{2}-1\right)^{5 / 2}}
$$

(1) Determine the domain of f.
(2) This function has four asymptotes. Find them!
(3) Use f^{\prime} to study its monotonocity.
(9) Use $f^{\prime \prime}$ to study its concavity.
(3) Sketch the graph of f.

Unusual examples

Construct a function f such that

- the domain of f is at least $(0, \infty)$
- f is continuous and concave up on its domain
- $\lim _{x \rightarrow \infty} f(x)=-\infty$

Construct a function g such that

- the domain of g is \mathbb{R}
- g is continuous
- g has a local minimum $x=0$
- g has an inflection point at $x=0$

Asymptotics

Definition

We say f is asymptotic to g at ∞ if

$$
\lim _{x \rightarrow \infty}(f(x)-g(x))=0
$$

There's a similar definition for f asymptotic to g at $-\infty$.

We are interested in the case when f is asymptotic to a line L. If L is horizontal, then we say f has a horizontal asymptote.

Example of f asymptotic to a line L

$$
f(x)=3 x+4+\frac{2 x-10}{x^{2}}
$$

This is an example where f is asymptotic to a line L. Since L is not horizontal, we say f has a slant asymptote. Find L and P.

Problem 1: Does this function have a slant asymptote? (Is this function asymptotic to a line at ∞ or $-\infty$).

$$
f(x)=\sqrt{x^{2}+5 x}
$$

Problem 2: Let's generalize this. Given a function f, how can we know if it has a slant asymptote? That is: does there exist numbers $a, b \in \mathbb{R}$ such that:

$$
\lim _{x \rightarrow \pm \infty}[f(x)-(a x+b)]=0
$$

Unexpected asymptotes

Steps to take to find if a function f has a slant asymptote:
(1) Does $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{x}$ exist? If no, then no slant asymptote. If yes, call it a.
(2) Does $\lim _{x \rightarrow \pm \infty} x\left(\frac{f(x)}{x}-a\right)$ exist? If no, then no slant asymptote. If yes, call it b and $L(x)=a x+b$ is a slant asymptote at $\pm \infty$.

Does this function have asymptotes? Find all asymptotes.

$$
f(x)=x+\sqrt{x^{2}+x}
$$

A tricky function to graph

The function $f(x)=x e^{1 / x}$ is weird. To save you time, here are its derivatives:

$$
f^{\prime}(x)=\frac{x-1}{x} e^{1 / x} \quad f^{\prime \prime}(x)=\frac{e^{1 / x}}{x^{3}}
$$

(1) Examine the behaviour f as $x \rightarrow \pm \infty$. There is an asymptote, but it's tricky to see.
(2) Carefully examine the behaviour of f as $x \rightarrow 0^{+}$and $x \rightarrow 0^{-}$. They are very different.
(3) Use f^{\prime} to study its monotonocity.
(9) Use $f^{\prime \prime}$ to study its concavity.
(5) Sketch the graph of f.

Show that f is always above its slant asymptote for $x>0$ and always below it for $x<0$.

