MAT137 - Sequences

- Reminder: Test 3 is this Thursday.
- See the course website for info about Test 3 , including what material it will cover.
- Today's lecture will assume you have watched videos 11.1-11.2

For Monday's lecture, watch videos 11.3, 11.4, 11.5, 11.6

Warm up

Write a formula for the general term of these sequences
(1) $\left\{a_{n}\right\}_{n=0}^{\infty}=\{1,4,9,16,25, \ldots\}$
(2) $\left\{b_{n}\right\}_{n=1}^{\infty}=\{1,-2,4,-8,16,-32, \ldots\}$
(3) $\left\{c_{n}\right\}_{n=1}^{\infty}=\left\{\frac{2}{1!}, \frac{3}{2!}, \frac{4}{3!}, \frac{5}{4!}, \ldots\right\}$
(9) $\left\{d_{n}\right\}_{n=1}^{\infty}=\{1,4,7,10,13, \ldots\}$

True or False?

Let f be a function with domain at least $[1, \infty)$. We define a sequence as $a_{n}=f(n)$.
Let $L \in \mathbb{R}$.
(1) IF $\lim _{x \rightarrow \infty} f(x)=L$, THEN $\lim _{n \rightarrow \infty} a_{n}=L$.
(2) IF $\lim _{n \rightarrow \infty} a_{n}=L$, THEN $\lim _{x \rightarrow \infty} f(x)=L$.
(3) IF $\lim _{n \rightarrow \infty} a_{n}=L$, THEN $\lim _{n \rightarrow \infty} a_{n+1}=L$.

Definition of limit of a sequence

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence. Let $L \in \mathbb{R}$.
Which statements are equivalent to " $\left\{a_{n}\right\}_{n=0}^{\infty} \longrightarrow L$ "?
(1) $\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\varepsilon$
(2) $\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}, \quad n>n_{0} \Longrightarrow\left|L-a_{n}\right|<\varepsilon$
(3) $\forall \varepsilon>0, \exists n_{0} \in \mathbb{R}$ s.t. $\forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\varepsilon$
(9) $\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}$ s.t. $\forall n \in \mathbb{R}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\varepsilon$
(0) $\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right| \leq \varepsilon$
(0) $\forall \varepsilon \in(0,1), \exists n_{0} \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\varepsilon$
(1) $\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\frac{1}{\varepsilon}$
(8) $\forall k \in \mathbb{Z}^{+}>0, \exists n_{0} \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<k$
(9) $\forall k \in \mathbb{Z}^{+}>0, \exists n_{0} \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\frac{1}{k}$

Definition of limit of a sequence (continued)

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence. Let $L \in \mathbb{R}$.
Which statements are equivalent to " $\left\{a_{n}\right\}_{n=0}^{\infty} \longrightarrow L$ "?
(10) $\forall \varepsilon>0$, the interval $(L-\varepsilon, L+\varepsilon)$ contains all the elements of the sequence, except the first few.
(1) $\forall \varepsilon>0$, the interval $(L-\varepsilon, L+\varepsilon)$ contains all the elements of the sequence, except finitely many.
(12) $\forall \varepsilon>0$, the interval $(L-\varepsilon, L+\varepsilon)$ contains infinitely many of the terms of the sequence.
(a) Every interval that contains L must contain all but finitely many of the terms of the sequence.
(0) Every open interval that contains L must contain all but finitely many of the terms of the sequence.

