MAT137 - Week 12 Lecture 2

- Reminder: The make up lecture is taking place on Thursday December 5 at 5:00-7:00 in MP203.
- Please fill out the feedback form by Friday December 13. Your responses are anonymous. The link is available in the announcement titled "Mid-year course feedback".
- Today's lecture will assume you have watched videos 6.11, 6.12.

For Thursday's lecture, watch videos 6.13, 6.14, 6.15

Proving something is an indeterminate form

(1) Prove that $\forall c \in \mathbb{R}, \exists a \in \mathbb{R}$ and functions f and g s.t.

$$
\lim _{x \rightarrow a} f(x)=0, \quad \lim _{x \rightarrow a} g(x)=0, \quad \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=c
$$

This is how you show that $\frac{0}{0}$ is an indeterminate form.
(2) Prove the same way that $\frac{\infty}{\infty}, 0 \cdot \infty$, and $\infty-\infty$ are also indeterminate forms.

- Prove that $1^{\infty}, 0^{0}$, and ∞^{0} are indeterminate forms. (You will only get $c \geq 0$ this time)

Indeterminate?

Which of the following are indeterminate forms for limits? If any of them isn't, then what is the value of such limit?
(1) $\frac{0}{0}$
(5) $\frac{\infty}{\infty}$
(10) $\infty-\infty$
(15) $0^{-\infty}$
(2) $\frac{0}{\infty}$
$\begin{array}{ll}\frac{1}{\infty} & \text { (11) } 1^{\infty}\end{array}$
(3) $\frac{0}{1}$
(1) $0 \cdot \infty$ (12) $1^{-\infty}$
(10) ∞^{0}
(8) $\infty \cdot \infty$
(13) 0^{0}
(17) ∞^{∞}
(4) $\frac{\infty}{0}$

- $\sqrt{\infty}$
(1) 0^{∞}
(18) $\infty^{-\infty}$

"Secant segments are above the graph"

Let f be a function defined on an interval I.
In Video 6.11 you learned that an alternative way to define " f is concave up on I " is to say that "the secant segments stay above the graph".

Rewrite this as a precise mathematical statement of the form

$$
" \forall a, b, c \in I, \quad a<b<c \Longrightarrow \text { an inequality involving } f, a, b, c \text { " }
$$

Prove the forward direction!: If f is concave up on I, then it satisfies the above statement.

