MAT137 - Properties of Series

- Today's lecture will assume you have watched videos $13.8,13.9$

For Monday's lecture, watch videos 13.10, 13.11, 13.12, 13.13, 13.14

Rapid fire review: convergent or divergent?

(1) $\int_{1}^{\infty} \frac{1}{x^{2}} d x$
(4) $\int_{0}^{1} \frac{1}{x^{2}} d x$
(7) $\int_{0}^{\infty} \frac{3}{x^{2}} d x$
(2) $\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x$
(5) $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$
(8) $\int_{0}^{\infty} \frac{1}{\sqrt{x}} d x$
(3) $\int_{1}^{\infty} \frac{1}{x^{2}+\sqrt{x}} d x$
(6) $\int_{0}^{1} \frac{1}{x^{2}+\sqrt{x}} d x$
(9) $\int_{0}^{\infty} \frac{1}{x^{2}+\sqrt{x}} d x$

Geometric series

Given a real number r, the series

$$
\sum_{n=0}^{\infty} r^{n}
$$

is called a geometric series. These are series we can evaluate explicitly.
Recall the following result from one of the videos:

Theorem

The geometric series $\sum_{n=0}^{\infty} r^{n}$ converges if and only if $|r|<1$.
In this case, $\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}$.

Geometric series

Calculate the value of the following series:
(1) $1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\ldots$
(2) $\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\ldots$
(3) $\frac{3}{2}-\frac{9}{4}+\frac{27}{8}-\frac{81}{16}+\ldots$
(9) $1+\frac{1}{2^{0.5}}+\frac{1}{2}+\frac{1}{2^{1.5}}+\frac{1}{2^{2}}+\frac{1}{2^{2.5}}+\ldots$
(6) $\sum_{n=1}^{\infty}(-1)^{n} \frac{3^{n}}{2^{2 n+1}}$
(c) $\sum_{n=k}^{\infty} r^{n}$

Series expansion

From the geometric series, we know that when $|x|<1$, we can expand the function $f(x)=\frac{1}{1-x}$ as a series:

$$
f(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

Find a similar way to write the following functions as series:

$$
A(x)=\frac{1}{1+x} \quad B(x)=\frac{1}{1+x^{2}} \quad C(x)=\frac{1}{2-x}
$$

A challenging problem.

Problem. Calculate the value of the following series:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) 3^{n}}
$$

Here are some steps to guide you.
(1) Compute $\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$, for $|x|<1$.
(Hint: It's a geometric series.)
(2) Compute $\frac{d}{d x}[\arctan x]$.
(3) Pretend you can take derivatives and antiderivatives of series the way you can take them of sums. Which series adds up to $\arctan x$?
(1) Now attempt the original problem.

